揭秘AI技术栈核心组件,构建智能系统的七大支柱
在人工智能技术飞速发展的今天,我们经常听到大模型、RAG、Agent等热词,但这些技术究竟是什么,它们之间又有什么联系?本文将为你梳理这些核心概念,帮助你构建完整的AI技术知识体系。
01 大语言模型(LLM):人工智能的“大脑”
大语言模型(Large Language Model,LLM)是现代AI系统的核心基础,相当于人工智能的“大脑”。它们是通过在海量文本数据上训练而成的深度学习模型,能够理解、生成和处理自然语言。
2025年中国大模型产业蓬勃发展,头部厂商竞争激烈,技术突破层出不穷。据最新数据显示,中国大模型开发平台市场规模已达16.9亿元人民币,呈现出明显的梯隊化特征。这些模型不仅能够理解和生成文本,还逐渐具备了一定的推理能力,为更复杂的AI应用奠定了基础。
把AI大模型当做人的大脑,因此调用AI大模型,相当于调用一个人。但需要注意的是,这个大“大脑”虽然知识渊博,但并非全知全能,它可能产生“幻觉”(错误信息),也可能无法获取最新知识。
02 RAG:检索增强生成——给模型装上“外部记忆”
RAG(Retrieval-Augmented Generation,检索增强生成)是一种让大模型能够实时获取外部信息的技术。它解决了大模型仅能依赖训练时数据的问题,使其能够像“开卷考试”的学生一样,在回答问题前先查阅最新资料。
RAG的工作原理:
- 检索:根据用户问题,从知识库中检索相关信息
- 增强:将检索到的信息与用户问题结合
- 生成:基于增强后的上下文生成答案
RAG技术正在不断演进,出现了像HyDE(Hypothetical Document Embeddings)和HyPE(Hypothetical Prompt Embeddings)这样的创新方法。HyDE会利用LLM生成一个“假想答案”,然后用这个答案的向量进行检索;而HyPE则为每个文档块生成一组“假想问题”,使检索更加多角度和智能。
03 函数调用:模型与外部工具的“连接器”
函数调用(Function Calling)使大模型能够调用外部工具和执行特定操作的能力。这让大模型不仅能够生成文本,还能与现实世界进行交互,执行实际任务。
例如,大模型可以通过函数调用:
- 获取实时数据(如天气、股价)
- 执行计算任务
- 操作外部系统(如发送邮件、控制智能设备)
- 查询数据库获取特定信息
函数调用极大地扩展了大模型的应用场景,使其从纯粹的对话工具转变为能够执行实际任务的智能助手。
04 Agent:智能体——自主决策的“AI个体”
Agent(智能体)是能够自主感知、决策和行动的AI系统。与仅仅响应查询的大模型不同,Agent具有目标导向性,能够自主规划并执行任务。
Agent的核心能力:
- 感知:从环境中获取信息
- 决策:基于目标和当前状态制定计划
- 执行:通过工具和函数调用执行行动
- 学习:从经验中改进策略
在工业领域,工业智能体正推动研发从经验试错模式向智能驱动范式转变,并推动制造过程从自动化向自主化升级。
05 知识库:AI的“知识仓库”
知识库是有组织的信息集合,为AI系统提供领域特定的知识支持。它是RAG系统的重要组成部分,为大模型提供准确、可靠的信息源。
知识库的构建过程:
- 加载:通过文档加载器加载数据/知识库
- 拆分:文本拆分器将大型文档拆分为较小的块
- 向量化:对拆分的数据块进行Embedding向量化处理
- 存储:将向量化的数据块存储到向量数据库中
知识库的质量直接影响到AI系统的性能,一个好的知识库应当准确、全面且易于检索。
06 向量数据库:专门处理“向量”的数据库
向量数据库是专门存储和搜索高维向量的数据库。它们针对相似性搜索进行了优化,能够快速找到与查询向量最相似的存储向量。
向量数据库的特点:
- 高效相似性搜索:能够快速找到相似向量
- 高维索引:有效索引和管理高维数据
- 大规模数据处理:支持海量向量的存储和检索
在RAG工作流中,向量数据库发挥着关键作用,它存储了文档的向量表示,使得快速检索相关文档成为可能。
07 知识图谱:表示“关系”的结构化知识
知识图谱是一种表示实体及其关系的结构化方式。它由节点(实体)和边(关系)组成,能够清晰地表示知识之间的关联。
与向量数据库主要存储非结构化信息的向量表示不同,知识图谱专注于结构化的关系信息。这使得知识图谱在需要复杂关系推理的场景中具有独特优势。
08 AGI:通用人工智能——AI的“终极目标”
AGI(Artificial General Intelligence,通用人工智能)指的是具备人类水平智能的AI系统,能够理解、学习和应用知识解决各种问题。
当前AI系统虽然在特定任务上表现出色,但距真正的AGI还有相当距离。AGI应当具备以下能力:
- 通用性:解决多种类型的问题
- 适应性:快速适应新环境和新任务
- 自主学习:无需大量标注数据就能学习新知识
- 常识推理:理解世界运作的基本规律
技术联系:如何协同工作?
这些技术并非孤立存在,而是相互协作,共同构建强大的AI系统。下图展示了这些技术如何协同工作: