深入详解人工智能入门数学基础:理解向量、矩阵及导数的概念

人工智能入门数学基础详解

        数学是人工智能的基石,理解数学基础对于掌握机器学习和深度学习算法至关重要。本篇文章将详细探讨线性代数和微积分中的基础概念,涵盖向量、矩阵及其运算,以及导数的基本概念。

第一部分:线性代数中的向量

1. 向量的定义与表示

向量是线性代数的核心概念之一。它不仅仅是一个数值的集合,而是一个具有大小和方向的数学对象。在多维空间中,向量可以用于表示点的位置、速度、力等物理量。

1.1 向量的表示

向量通常用粗体字母或箭头上标表示。行向量和列向量是两种常见形式:
- **行向量**:\([v_1, v_2, \ldots, v_n]\)
- **列向量**:\(\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}\)

例如,二维空间中的一个向量可以表示为 \(\vec{v} = [3, 4]\)。

2. 向量的基本运算

2.1 向量加法与减法

向量加法是按元素逐个相加。假设有两个向量 \(\vec{a} = [1, 2, 3]\) 和 \(\vec{b} = [4, 5, 6]\),则它们的和为:
\[
\vec{a} + \vec{b} = [1+4, 2+5, 3+6] = [5, 7, 9]
\]
向量减法类似,只需将对应元素相减。

2.2 标量乘法

标量乘法是将向量的每个分量乘以同一个数。给定标量 \(k =

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值