目录
导数在人工智能中的详细应用场景
导数在人工智能中的应用是多方面的,它不仅在理论上构建了机器学习算法的基础,也在实践中为优化和模型训练提供了工具。在这一部分,我们将详细探讨导数在人工智能中的几个关键应用场景,并提供具体示例。
1. 梯度下降法
1.1 概述
梯度下降是一种迭代优化算法,用于寻找函数的局部最小值。在机器学习中,它常用来优化损失函数。梯度下降通过对损失函数的导数(即梯度)的计算,确定更新参数的方向和步幅。
1.2 应用示例
假设我们有一个简单的二次损失函数:
\[
L(\theta) = \theta^2 - 4\theta + 4
\]
目