【人工智能数学应用篇】导数在人工智能中的详细应用场景

目录

导数在人工智能中的详细应用场景

1. 梯度下降法

1.1 概述

1.2 应用示例

2. 反向传播算法

2.1 概述

2.2 应用示例

3. 激活函数的导数

3.1 概述

3.2 常见激活函数和导数

3.3 应用示例

4. 自动微分

4.1 概述

4.2 应用示例

结论


导数在人工智能中的详细应用场景

        导数在人工智能中的应用是多方面的,它不仅在理论上构建了机器学习算法的基础,也在实践中为优化和模型训练提供了工具。在这一部分,我们将详细探讨导数在人工智能中的几个关键应用场景,并提供具体示例。

1. 梯度下降法

1.1 概述

        梯度下降是一种迭代优化算法,用于寻找函数的局部最小值。在机器学习中,它常用来优化损失函数。梯度下降通过对损失函数的导数(即梯度)的计算,确定更新参数的方向和步幅。

1.2 应用示例

假设我们有一个简单的二次损失函数:

\[ 
L(\theta) = \theta^2 - 4\theta + 4
\]

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值