人工智能数学基础学习概述
在深入学习人工智能的过程中,扎实的数学基础至关重要。以下将详细探讨矩阵与向量运算、特征值与特征向量、矩阵分解(包括奇异值分解SVD和主成分分析PCA),以及基本概率论。这些内容不仅是理解复杂AI算法的基础,也是实现数据降维和特征提取的关键工具。
一、矩阵与向量运算
1. 向量的基本概念
定义:向量是具有方向和大小的量,可以表示为一维数组。例如,二维向量可以表示为 \(\mathbf{v} = [v_1, v_2]^T\)。
运算:
加法:\(\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2]^T\)
标量乘法:\(c\mathbf{v} = [cv_1, cv_2]^T\)
点积(内积):\(\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2\)
范数:\(\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}\)
2. 矩阵的基本概念
定义:矩阵是一个按矩形排列的数或函数的集合,具有行和列。例如,一个 \(m \times n\) 的矩阵 \(\mathbf{A}\) 表示为:
\[
\mathbf{A