【人工智能数学基础篇】——人工智能技术中核心数学基础知识学习概述,理解矩阵、向量、特征值及概率论基本概念

人工智能数学基础学习概述

        在深入学习人工智能的过程中,扎实的数学基础至关重要。以下将详细探讨矩阵与向量运算、特征值与特征向量、矩阵分解(包括奇异值分解SVD和主成分分析PCA),以及基本概率论。这些内容不仅是理解复杂AI算法的基础,也是实现数据降维和特征提取的关键工具。


 一、矩阵与向量运算

 1. 向量的基本概念

定义:向量是具有方向和大小的量,可以表示为一维数组。例如,二维向量可以表示为 \(\mathbf{v} = [v_1, v_2]^T\)。

运算:
加法:\(\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2]^T\)
标量乘法:\(c\mathbf{v} = [cv_1, cv_2]^T\)
点积(内积):\(\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2\)
范数:\(\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}\)

2. 矩阵的基本概念

定义:矩阵是一个按矩形排列的数或函数的集合,具有行和列。例如,一个 \(m \times n\) 的矩阵 \(\mathbf{A}\) 表示为:

\[
\mathbf{A

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值