【人工智能数学基础】——深入详解导数与偏导数:理解函数的变化率,优化算法的基础

# 深入详解导数与偏导数:理解函数的变化率,优化算法的基础

        导数与偏导数是微积分中的核心概念,在数学、工程、物理以及计算机科学等多个领域中具有广泛的应用。特别是在人工智能(AI)和机器学习(ML)领域,导数和偏导数是优化算法的基础,掌控它们能够帮助我们更好地理解和设计高效的学习算法。本文将深入探讨导数与偏导数的概念、计算方法及其在优化算法中的应用,并提供具体示例和代码说明,以帮助读者全面掌握这一重要知识。

目录

# 深入详解导数与偏导数:理解函数的变化率,优化算法的基础

1. 导数基础

1.1 导数的定义

1.2 导数的几何意义

1.3 导数的计算规则

导数的运算规则

1.4 高阶导数

1.5 导数的应用

2. 偏导数基础

2.1 多变量函数的导数

2.2 偏导数的定义

2.3 偏导数的计算方法

2.4 梯度向量

2.5 偏导数的应用

3. 导数与偏导数在优化算法中的应用

3.1 优化问题简介

3.2 梯度下降法

3.3 随机梯度下降法(SGD)

3.4 高级优化算法

3.4.1 动量法(Momentum)

3.4.2 自适应学习率算法

3.4.2.1 Adagrad

3.4.2.2 RMSprop

3.4.2.3 Adam

4. 示例代码与实现

4.1 一元函数的导数与极值

4.2 多元函数的偏导数与极值

4.3 实现梯度下降法

4.4 使用自动微分库进行优化

5. 总结

相关资源


1. 导数基础

1.1 导数的定义

在微积分中,导数(Derivative)描述了一个函数在某一点的瞬时变化率。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值