# 深入详解导数与偏导数:理解函数的变化率,优化算法的基础
导数与偏导数是微积分中的核心概念,在数学、工程、物理以及计算机科学等多个领域中具有广泛的应用。特别是在人工智能(AI)和机器学习(ML)领域,导数和偏导数是优化算法的基础,掌控它们能够帮助我们更好地理解和设计高效的学习算法。本文将深入探讨导数与偏导数的概念、计算方法及其在优化算法中的应用,并提供具体示例和代码说明,以帮助读者全面掌握这一重要知识。
目录
1. 导数基础
1.1 导数的定义
在微积分中,导数(Derivative)描述了一个函数在某一点的瞬时变化率。