深入详解人工智能深度学习框架之 TensorFlow:基本概念
TensorFlow 是一个由 Google 开发的开源深度学习框架,广泛用于开发机器学习和人工智能应用。TensorFlow 的核心概念包括 张量 (Tensors) 和 计算图 (Computational Graph)。理解这些基本概念是深入掌握 TensorFlow 的关键。接下来,我们将从这些概念出发,探讨其核心原理、使用方法以及实际应用。
1. 张量 (Tensors)
什么是张量?
张量是 TensorFlow 中数据的基本表示形式。在数学中,张量可以被视为多维数组,是一个多维数组,类似于 NumPy 中的 ndarray。它是一种广泛用于表示多维数据的数学对象。简单来说,张量是深度学习模型中传递信息的载体,所有的输入和输出数据都以张量的形式存在。TensorFlow 支持不同维度的张量,根据维度的不同,张量可以分为以下几种类型:
- 标量 (0D Tensor):单个数值,表示一个具体的常数。例如,
5
或3.14
。 - 向量 (1D Tensor):一维数组,即数字的集合。例如,
[1, 2, 3]
。 - 矩阵 (2D Tensor):二维