【人工智能深度学习框架】——深入详解人工智能深度学习框架之 TensorFlow:基本概念

深入详解人工智能深度学习框架之 TensorFlow:基本概念

TensorFlow 是一个由 Google 开发的开源深度学习框架,广泛用于开发机器学习和人工智能应用。TensorFlow 的核心概念包括 张量 (Tensors)计算图 (Computational Graph)。理解这些基本概念是深入掌握 TensorFlow 的关键。接下来,我们将从这些概念出发,探讨其核心原理、使用方法以及实际应用。


1. 张量 (Tensors)

什么是张量?

张量是 TensorFlow 中数据的基本表示形式。在数学中,张量可以被视为多维数组,是一个多维数组,类似于 NumPy 中的 ndarray。它是一种广泛用于表示多维数据的数学对象。简单来说,张量是深度学习模型中传递信息的载体,所有的输入和输出数据都以张量的形式存在。TensorFlow 支持不同维度的张量,根据维度的不同,张量可以分为以下几种类型:

  • 标量 (0D Tensor):单个数值,表示一个具体的常数。例如,53.14
  • 向量 (1D Tensor):一维数组,即数字的集合。例如,[1, 2, 3]
  • 矩阵 (2D Tensor):二维
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值