AI大模型学习之基础数学:线性代数-AI大模型的数学基石

在这里插入图片描述

🧑 博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++, C#, Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQL server,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,qt,python等,具备多种混合语言开发能力。撰写博客分享知识,致力于帮助编程爱好者共同进步。欢迎关注、交流及合作,提供技术支持与解决方案。
技术合作请加本人wx(注明来自csdn):xt20160813

在这里插入图片描述

线性代数:AI大模型的数学基石

人工智能(AI)大模型的成功离不开数学的支持,其中线性代数、概率统计和微积分构成了其核心理论基础。线性代数作为描述和操作高维数据的基本工具,在深度学习、机器学习和自然语言处理等领域扮演着关键角色。本文将深入讲解线性代数的概念、核心知识点、原理及其在AI大模型中的应用,,适合希望深入理解模型原理的开发者参考。


一、线性代数简介

线性代数是研究向量、矩阵、线性变换及其性质的数学分支。在AI大模型中,线性代数用于表示数据、模型参数和计算过程。例如,神经网络的权重矩阵、输入数据的向量表示,以及矩阵乘法驱动的计算过程,都依赖线性代数的基本原理。

线性代数的核心在于“线性”:即满足加法和标量乘法的性质(线性组合)。通过这些性质,线性代数能够高效地处理高维数据和复杂计算,这正是AI大模型处理大规模数据集和参数的基石。


二、线性代数的核心知识点与原理

以下是线性代数中的关键概念及其在AI中的意义,涵盖向量、矩阵、线性变换、特征值与特征向量等。

1. 向量

概念与原理

  • 向量是一个有序的数字列表,可以表示空间中的点或方向。在n维空间中,一个向量表示为:
    v=[v1,v2,…,vn]T \mathbf{v} = [v_1, v_2, \dots, v_n]^T v=[v1,v2,,vn]T
    其中viv_ivi是标量,TTT表示转置。
  • 向量支持加法和标量乘法,满足线性性质:
    u+v=[u1+v1,u2+v2,…,un+vn] \mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] u+v=[u1+v1,u2+v2,,un+vn]
    cv=[cv1,cv2,…,cvn] c\mathbf{v} = [cv_1, cv_2, \dots, cv_n] cv=[cv1,cv
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值