Pandas常用I/O函数(四):处理JSON文件read_json()一文详解+代码展示

本文详细介绍了Pandas库中的read_json()函数,用于将JSON文件转换为DataFrame。讨论了参数如orient、dtype、convert_axes等,并通过代码示例展示了不同参数设置下的转换效果。文章强调理解这些参数对于高效处理JSON数据的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

 read_json

 参数说明:

返回形式

参数修改演示

 不加参数:

 split:

records

index

 colmuns

 Values

typ

 dtype

convert_axes

convert_dates

keep_default_dates

precise_float


前言

本文接上一篇博客:Python处理JSON文件数据各类操作一文详解

处理JSON文件一般并且进行统计或分析都需要把JSON文件格式转换为dataframe形式或是将dataframe转换为JSON,这都需要用到to_json()和read_json()函数。如果能够掌握该两种函数的参数用法能够节省不少时间和代码对后续的文件再处理,因此本篇文章初衷为详细介绍并运用此函数来达到彻底掌握的目的。希望读者看完能够提出问题或者看法,博主会长期维护博客做及时更新。纯分享,希望大家喜欢。 


与read_json函数对应的为to_json,一个为将dataFrame转换为json文件形式,一个为json转换为dataFrame形式而read_josn就是将json数据转换为dataframe数据类型,与to_json的函数参数形式大体都相同。to_json想要了解可以看我上篇文章:Pandas处理JSON文件to_json()一文详解

目录

前言

 read_json

 参数说明:

返回形式

参数修改演示

 不加参数:

 split:

records

index

 colmuns

 Values

typ

 dtype

convert_axes

convert_dates

keep_default_dates<

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值