一文速学(十四)-数据分析之Pandas处理DataFrame稀疏数据及维度不匹配数据详解

本文介绍了如何在数据分析中使用Pandas处理DataFrame的索引缺失和负值取正问题。通过reindex方法补充列索引,使用astype和fillna结合abs处理负值,同时讲解了提取数值和唯一值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、索引缺失

二、负值取正

三.提取数值

四、提取唯一值

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢


前言

众所周知我们获取的第一手数据往往都是比较杂乱无章的,这些文件保存一般都是csv文件或者是excel文件,读取转换成DataFrame还有可能因为缺少列索引或者是各类数据维度不相等而报错。

Pandas的基础数据结构Series和DataFrame。若是还不清楚的可以再去看看我之前的博客详细介绍这两种数据结构的处理方法:

一文速学-数据分析之Pandas数据结构和基本操作代码

一文速学-Pandas实现数值替换、排序、排名、插入和区间切片

一些Pandas基础函数的使用方法:

评论 82
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值