七大排序算法。

常见的排序算法有七种,分别是:
插入排序: 直接插入排序,希尔排序
选择排序: 选择排序,堆排序
交换排序: 冒泡排序,快速排序
归并排序: 归并排序

直接插入排序

原理: 每一步将一个待排序的元素,按其排序码的大小,插入到前面已经排好序的一组元素的适当位置上去,直到元素全部插入为止。

时间复杂度:
最坏情况是:O(n^2) 最好情况(有序的情况)是:O(n)
空间复杂度: O(1)
稳定性: 稳定

关于稳定性: 如果一个排序是稳定的排序,那么他就可以变为不稳定的排序。但是如果一个排序本身就是不稳定的排序,你是不可能把他变为稳定的排序的。
如果他是稳定的排序,在比较的过程当中就没有跳跃式的交换。

public static void insertSort(int[] array){
        for (int i = 1; i < array.length; i++) {
            int tmp = array[i];
            int j = i-1;
            for (; j >= 0; j--) {
                if (array[j] > tmp){
                    array[j+1] = array[j];
                }else {
                    //array[j+1] = tmp;
                    break;
                }
            }
            array[j+1] = tmp;
        }
    }

插入排序,初始数据越接近有序,时间效率越高。

希尔排序

原理: 希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离相同的记录分在同一组内,并对每一组内的记录进行排序。然后,取出数据,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。

时间复杂度: O(n^2)
空间复杂度: O(1)
稳定性: 不稳定

 public static  void  shellSort(int[] array) {
        int[] drr = {5,3,1};
        for (int i = 0; i < drr.length; i++) {
            shell(array,drr[i]);
        }
    }

    public static void shell(int[] array,int gap) {
        for (int i = gap; i < array.length; i++) {
            int tmp = array[i];
            int j = i-gap
            for (; j >= 0 ; j = j - gap) {
                if (array[j] > tmp){
                    array[j + gap] = array[j];
                }else {
                    break;
                }
            }
            array[j + gap] = tmp;
        }
    }

选择排序

原理: 每一次从无序区间选出最大(或最小)的一个元素,存放在无序区间的最后(或最前),直到全部待排序的数据元
素排完 。

时间复杂度: O(n^2)
空间复杂度: O(1)
稳定性: 不稳定

  public static void selectSort(int[] array) {
        for (int i = 0; i < array.length; i++) {
            for (int j = i+1; j < array.length; j++) {
                if (array[i] > array[j]){
                    int tmp = array[i];
                    array[i] = array[j];
                    array[j] = tmp;
                }
            }
        }
    }

堆排序

原理: 是选择排序,只是不在使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。
注意:排升序要建大堆,排降序要建小堆。

时间复杂度: O(nlog2(n))
不管有序和无序都是
空间复杂度: O(1)
稳定性: 不稳定

public static void heapSort(int[] array){
        createHeap(array);
        int end = array.length-1;
        while (end > 0){
            int tmp = array[0];
            array[0] = array[end];
            array[end] = tmp;
            adjustDown(array,0,end);
            end--;
        }
    }
    public static void createHeap(int[] array){
        for (int i = (array.length-1-1)/2; i >= 0; i--) {
            adjustDown(array,i,array.length);
        }
    }
    public static void adjustDown(int[] array,int root,int len){
        int parent = root;
        int child = 2*parent+1;
        while (child < len){
            if (child+1 < len && array[child] < array[child+1]){
                child++;
            }
            if (array[child] > array[parent]){
                int tmp = array[child];
                array[child] = array[parent];
                array[parent] = tmp;

                parent = child;
                child = 2*parent+1;
            }else {
                break;
            }
        }
    }

冒泡排序

原理: 在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序。

时间复杂度: O(n^2)
空间复杂度: O(1)
稳定性: 稳定

public static void bubbleSort(int[] array){
        for (int i = 0; i < array.length-1; i++) {
            for (int j = 0; j < array.length-1-i; j++) {
                if (array[j] > array[j+1]){
                    int tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                }
            }
        }
    }
    //优化后
    public static void bubbleSort1(int[] array){
        boolean flg = false;
        for (int i = 0; i < array.length-1; i++) {
            for (int j = 0; j < array.length-1-i; j++) {
                if (array[j] > array[j+1]){
                    int tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flg = true;
                }
            }
            if (flg == false){
                return;
            }
        }
    }

快速排序

原理:

  1. 从待排序区间选择一个数,作为基准值(pivot);
  2. Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的
    (可以包含相等的)放到基准值的右边;
  3. 采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 == 1,代表已经有序,或者小区间的长度==0,代表没有数据。

时间复杂度:
O(nlog2(n)) 最坏情况下:1234567/7654321 O(n^2)
空间复杂度:
O(log2(n)) 最坏情况下:O(n)
稳定性: 不稳定

 public static int partition(int[] array,int low,int high) {
        int tmp = array[low];
        while (low < high){
            while (low < high && array[high] >= tmp){
                high--;
            }
            array[low] = array[high];
            while (low < high && array[low] <= tmp){
                low++;
            }
            array[high] = array[low];
        }
        array[low] = tmp;
        return low;
    }

    public static void quick(int[] array,int left,int right) {
        if(left >= right) {
            return;
        }

        int par = partition(array, left, right);
        quick(array,left,par-1);
        quick(array,par+1,right);
    }
    public static void quickSort(int[] array) {
        quick(array,0,array.length-1);
    }

    //快速排序(非递归)
    public static void quickSort1(int[] array) {
        Stack<Integer> stack = new Stack<>();

        int left = 0;
        int right = array.length-1;
        int par = partition(array,left,right);

        if (par > left + 1) {
            stack.push(left);
            stack.push(par-1);
        }
        if (par < right - 1) {
            stack.push(par+1);
            stack.push(right);
        }
        while (!stack.isEmpty()) {
            right = stack.pop();
            left = stack.pop();
            par = partition(array,left,right);
            if (par > left + 1) {
                stack.push(left);
                stack.push(par-1);
            }
            if (par < right - 1) {
                stack.push(par+1);
                stack.push(right);
            }
        }

    }

注意: 快排要快,那么每次划分序列的时候,如果都可以均匀的进行划分,那么效率最好。

归并排序

原理: 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

时间复杂度: O(nlog2(n))
空间复杂度: O(n)
稳定性: 稳定
外排序:磁盘。

public static void mergeSortInternal(int[] array,int low,int high){
        if (low >= high){
            return;
        }
        //分解
        int mid = (low+high)/2;
        mergeSortInternal(array,low,mid);
        mergeSortInternal(array,mid+1,high);
        //合并
        merge(array,low,mid,high);
    }

    //归并:将两个有序段归并为一个有序段
    public static void merge(int[] array,int low,int mid,int high){
        int s1 = low;
        int s2 = mid+1;
        int len = high-low+1;
        int[] ret = new int[len];
        int i = 0;//用来表示ret的下标

        while (s1 <= mid && s2 <= high){
            if (array[s1] <= array[s2]){
                ret[i++] = array[s1++];
       /*         ret[i] = array[s1];
                i++;
                s1++;*/
            }else {
                ret[i++] = array[s2++];
            }
        }
        while (s1 <= mid){
            ret[i++] = array[s1++];
        }
        while (s2 <= high){
            ret[i++] = array[s2++];
        }

        for (int j = 0; j < ret.length; j++) {
            array[j+low] = ret[j];
        }
    }

    public static void mergeSort1(int[] array){
        mergeSortInternal(array,0,array.length-1);
    }


    //归并排序(非递归)
    public static void mergeSort(int[] array) {
        for (int gap = 1; gap < array.length; gap *= 2) {
            mergeNor(array,gap);
        }
    }

    public static void mergeNor(int[] array,int gap) {
        int[] ret = new int[array.length];
        int k = 0;//ret的下标
        int s1 = 0;
        int e1 = s1+gap-1;
        int s2 = e1+1;
        int e2 = s2+gap-1 < array.length ? s2+gap-1 :  array.length-1;

        //1、肯定是有两个归并段的
        while (s2 < array.length) {
            //2、对应的s1位置和s2位置进行比较
            while (s1 <= e1 && s2 <= e2){
                if (array[s1] < array[s2]){
                    ret[k++] = array[s1++];
                }else {
                    ret[k++] = array[s2++];
                }
            }
            //3、上述第2步在比较的过程当中,肯定会有一个下标先走完一个归并段
            //4、判断是谁没走完,把剩下的数据拷贝到结果数组当中
            while (s1 <= e1){
                ret[k++] = array[s1++];
            }
            while (s2 <= e2){
                ret[k++] = array[s2++];
            }
            //5、接着确定新的s1,e1,s2,e2
            s1 = s2;
            e1 = s1+gap-1 < array.length ? s1+gap-1 : array.length-1;
            s2 = e1+1;
            e2 = s2+gap-1 < array.length ? s2+gap-1 : array.length-1;
        }
        while (s1 <= array.length-1){
            ret[k++] = array[s1++];
        }
        for (int i = 0; i < ret.length; i++) {
            array[i] = ret[i];
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值