目录
【开场30秒抓人眼球】 “如果你家超市每天门口有1000人晃进来,却只有600人买单,剩下的400人去哪儿了?”
这不是段子,而是某连锁商超后台的真实数据。今天,我们把这份“客流流失地图”撕给你看,并送上4个让营业额立涨15%的狠招!
一、我们把超市“翻了个底朝天”,挖出5大客流黑洞
数据来源:2024年7月某头部超市连续14天的Wi-Fi探针+POS小票+热力像机交叉验证,样本门店1500㎡,日均进店2876人。
黑洞位置 | 出现时段 | 流失人数/天 | 典型场景 | 顾客原话 |
---|---|---|---|---|
①入口2米“风幕区” | 10:00-11:00 | 312人 | 被促销员“吓退” | “一进来三个大妈塞传单,我直接拐弯去了便利店。” |
②生鲜拐弯死角 | 17:30-19:00 | 276人 | 挑完水果发现“又得排队称重” | “算了,去对面盒马。” |
③堆头过高遮挡视线 | 全天 | 198人 | 找不到牛奶 | “逛迷宫一样,不买了。” |
④自助收银“卡机” | 12:00-13:00 | 164人 | 扫条码三次失败 | “算了,上班要迟到。” |
⑤出口闸机“二次验小票” | 19:00-20:00 | 97人 | 队伍排到电梯口 | “下次网购吧。” |
小结:每天最少1047位顾客“临门一脚”逃跑,按客单价68元计算,门店年损失 2600万元!
二、为什么你家的“客流漏斗”总堵?三个致命误区
-
只看POS数据,不看“消失的人”
传统BI只统计买单顾客,却忽视了大量“只逛不买”的高意向人群。 -
动线设计“反人类”
把高周转的牛奶放在最深处,把低毛利的纸巾堵在黄金位置,顾客用脚投票。 -
高峰人手“反向配置”
早班收银员是晚班的2倍,而17:00-19:00才是排队高峰。
三、4步回血攻略,15天见效(附可直接落地的SOP)
STEP 1 入口2米“降噪”——把促销员变“导购屏”
-
做法:撤掉3个发传单大妈,换成1台55寸互动屏+1个“微笑引导员”。
-
数据:顾客停留时长从9秒→27秒,发券转化率提升4倍。
-
成本:硬件租赁999元/月,大妈工资省2400元/月。
STEP 2 生鲜区“15秒快速称重”
-
做法:
① 高峰期增开移动称重台(宜家同款折叠桌)。
② 电子价签同步显示“已称重”绿标,减少重复排队。 -
数据:称重排队人数从28人→7人,生鲜客单价↑12%。
STEP 3 自助收银“防卡机”三件宝
-
做法:
① 张贴“扫码姿势”漫画(减少90%角度错误)。
② 每台机器配1名“15秒响应”飞虎队(戴红袖章)。
③ 故障灯+语音播报同步提醒。 -
数据:自助区流失率从23%↓到6%。
STEP 4 出口“无感核验”
-
做法:取消人工二次验小票,改为AI摄像头识别“未结账商品”。
-
数据:出口通过效率↑3倍,投诉量↓70%。
四、Bonus:一张“客流健康度”自测表
每天打烊后让值班经理填,5分钟搞定:
指标 | 绿灯 | 黄灯 | 红灯 |
---|---|---|---|
入口2米内停留>30秒人数占比 | <5% | 5-10% | >10% |
生鲜区排队>8人时长 | 0分钟 | 1-5分钟 | >5分钟 |
自助收银故障>30秒次数 | 0次 | 1-2次 | >2次 |
出口闸机排队>3人时长 | 0分钟 | 1-3分钟 | >3分钟 |
连续3天出现红灯,立即启动“4步回血”!
摄像头”不是保安大叔的第三只眼,而是一套会“数人头、算轨迹、猜心情”的算法军团。下面把超市客流分析的“黑科技内脏”全部剖给你看——不拽公式,只说人话。
1. 摄像头怎么“一眼看出”谁是人、谁是购物车?
-
硬件:400万像素、120dB宽动态、自带红外补光,白天逆光、晚上熄灯都能拍清。
-
算法:YOLOv8 nano(2024年3月版本)→ 0.7毫秒识别一帧,人形mAP 93.2%,连穿恐龙睡衣的小朋友都能被揪出来。
-
避坑:货架反光、地面倒影是误报大户,系统会再跑一次“反光检测子网”,把镜面倒影自动拉黑。
2. 进店、出店怎么区分?——“越线+方向”双保险
-
在门框顶部装2台摄像头,一前一后形成“虚拟闸机”。
-
算法逻辑:
① 头肩框中心点跨“入口线”→记1次“in”。
② 0.5秒内又跨回“出口线”→判定为“徘徊”,自动删除,避免重复计数。 -
极端场景:
-
两人并肩进门→用“Re-ID重识别”看衣服颜色+步态,拆分成2人。
-
抱着小孩→小孩头肩被大人挡住,系统用“婴儿篮检测模型”补漏。
-
3. 热力图不是乱涂颜色,而是“位置×时间”的3D矩阵
-
最小粒度:30cm×30cm地砖为一个网格,每秒刷新一次。
-
权重算法:
停留2秒以下=路过,权重0;
停留2-10秒=感兴趣,权重1;
停留10秒以上=高意向,权重3。 -
输出:10分钟滚动平均,红色越深≈越堵,直接导出给店长当“排班指挥棒”。
4. “排队长度”怎么算?——用“人头密度反推”
-
思路:排队区像素密度>0.8人/㎡且人形框纵向重叠率>60% → 判定为排队。
-
误差修正:
-
购物车也被算成人?→检测到四轮框即剔除。
-
顾客蹲地上挑牛奶?→头肩高度低于0.8米且静止>5秒,不计入排队。
-
5. 人脸去隐私:一张图进系统就“打码”
-
边缘计算盒子(NVIDIA Jetson Orin Nano)本地完成人脸模糊→再上传云端,完全符合《个人信息保护法》“原始图像不出门店”红线。
-
匿名ID:用“衣服主色+身高+性别”做128维向量,24小时后自动失效,连亲妈都追溯不到是谁。
6. “防薅羊毛”小彩蛋
-
个别大爷大妈故意在入口探头探脑制造“假客流”,系统识别“同一匿名ID 5分钟内反复越线5次”→自动标记“异常徘徊”,不计入当日客流。
-
误杀率<0.3%,已通过100家门店、3万小时实测。
7. 整套系统长什么样?
门店天花板
├─ 400万像素AI摄像头 ×18(含2台双目立体)
├─ 边缘盒子(本地模型推理)
├─ 5G路由(只传匿名结构化数据)
└─ SaaS后台(手机端/PC端实时看板)
-
成本:单店一次性投入≈1.8万元(含安装),比雇1名全职统计员半年工资还低。
-
ROI:平均15天节省的人工+防损即可回本。
一句话总结
摄像头+AI=让超市拥有“上帝视角”:谁来了、谁走了、谁在犹豫、谁会回头,全部量化成一张张可执行的“营业作战图”。
下次进店,你头顶那只“眼睛”可能正在默默对你说:“欢迎光临,我知道你今天想买酸奶。”
五、写在最后
别再只盯着“今天卖了多少”,真正的高手都在计算“今天少卖了多少”。
把这篇转给店长,15天后你会回来谢我。
目录
code 链接
code 2
18 台枪机 + 4 台鱼眼拍到的画面实时拼成一张整店平面大图,再用 StrongSORT 把同一顾客在不同相机里的轨迹串成一条完整动线;接着用 DBSCAN 自动聚类出店里 5 条最典型的人流路线,并用 LSTM 根据过去 14 天数据预测未来 1 小时每个区域的客流;最后把这些实时热力图、动线轨迹和预测曲线通过 Flask 接口推送到店长小程序,一键就能生成下一时段的兼职排班表。