【多任务学习 | 论文】MTI-net (ECCV2020)

本文探讨了多任务学习的优势,如节省内存和提高速度,并指出当任务间存在互补信息时性能更优。然而,负迁移可能导致训练效果下降。为解决此问题,文章提出了多尺度多模态 distillation 单元和特征传播模块,利用循环网络在不同尺度上捕获任务间的共性和差异,尤其是在场景解析、深度和语义分割等任务中。通过在不同尺度上处理,更好地利用了任务间的互补信息,提高了预测准确性。实验结果显示了这种方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章简介

论文链接 代码链接
Accepted at ECCV2020
Main contribution: mutli-modal distillation unit & feature propagation module; 可以结合多个任务在不同scale下的特点结果.
任务:(室内)场景理解 scene parsing; 辅助任务: depth, semantic segmentation

Background & motivation

  • 多任务相比于Single task的优越性:相对于single task,更节省memory;因为减少了重复的feature计算所以有increased speed;如果有complementary information会效果更好
  • First, due to their layer sharing, the resulting memory footprint is substantially reduced. Second, as they explicitly avoid to repeatedly calculate the features in
    the shared layers, once for every task, they show increased inference speeds. Most importantly, they have the potential for improved performance if the associated tasks share complementar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值