受限波尔茨曼机概要

本文简要概述了受限波尔茨曼机(RBM)的基本结构与工作原理,并介绍了一种基于对比散度的快速学习算法。此外,还讨论了如何通过向量化等方式进一步提高算法效率及几种RBM评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文根据论文–introduction to Restricted Boltzmann Machine(中国科技论文在线),删去了一些公式推理,作简要概括,主要为编程实现而总结。(具体内容请参考原文)

  • 受限波尔茨尼机结构及相关函数:这里写图片描述
    这里写图片描述
    这里写图片描述
  • 基于对比散度的RBM快速学习算法这里写图片描述这里写图片描述
    上面算法中的每个for语句都可以使用向量化来加速算法。
    另外,其他一些改进的学习算法:
    这里写图片描述

  • 参数设置
    与一般的神经网络训练并无多大区别。请参考原文

  • RBM的评估算法
    论文介绍了两种方法:这里写图片描述
    这里写图片描述

    • 其他改进的RBM算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值