广义短棋的参数化复杂度分析
1. 游戏与组合问题
在将游戏视为组合问题时,我们通常关注当前行动的玩家是否存在必胜策略,即无论对手如何行动,该策略都能确保玩家赢得游戏。参数化复杂度通过考虑 k 步或短游戏来研究游戏问题,也就是询问游戏是否存在最多在 k 步内获胜的策略。
目前,已有三种短游戏被证明是 AW[*] - 完全问题,分别是短节点凯尔斯游戏(Short Node Kayles)、短广义地理游戏(Short Generalized Geography)和短追逐游戏(Short Pursuit)。这些证明都采用了从量化布尔 t - 规范化公式可满足性(Quantified Boolean t - Normalized Formula Satisfiability)或其单一变体的归约方法。还有一个短游戏,受限交替击中集(Restricted Alternating Hitting Set),在使用额外参数时被证明属于固定参数可解类(FPT)。而卵石游戏(Pebble Game)、钉板游戏(Peg Game)和猫鼠游戏(Cat and Mouse),当以玩家可用的可移动棋子数量为参数时,被证明是 XP - 完全问题。
接下来,我们将深入研究广义短棋(Short Generalized Chess)的复杂度。广义国际象棋是在一个 n × n 的棋盘上进行的,已知其为 EXPTIME - 完全问题。
2. AW[*] 类
许多短广义游戏很容易被证明属于 PSPACE 和 XP 类,但 Downey 和 Fellows 认为 k 步游戏的“自然归属”是 AW[ ] 类。为了支持这一猜想,我们通过将广义短棋归约为量化布尔 t - 规范化