
Mathematics In Algorithm
文章平均质量分 94
算法工程师、程序员不可缺少的数学知识
皮皮AI记
硕士,AI算法工程师。曾获华为杯中国研究生数学建模竞赛一等奖,省优秀毕业生等。写过几篇中文核心,发过几篇国际会议,还有几个授权专利。喜欢搞搞代码,写写博客,没事还会搞搞LaTeX。愿景:用数学和代码构建智能系统,用逻辑创造价值。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【NLP】再看交叉熵损失函数
Focal Loss for Dense Object Detection交叉熵在深度学习领域出现交叉熵(cross entropy)的地方就是交叉熵损失函数了。通过交叉熵来衡量目标与预测值之间的差距。了解交叉熵还需要从信息论中的几个概念说起。信息量如何衡量一条信息包含的信息量?加入我们有以下的两个事件:事件1:年底昆明要下雪事件2:年底哈尔滨要下雪凭直觉来说,事件1的信息量比事件2的信息量大,因为昆明一年四季如春,下雪的几率非常小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能原创 2022-01-06 22:36:08 · 1631 阅读 · 4 评论 -
【数学理论】最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
最优化问题求解f(x)f(x)f(x)最小值是的x∗x^*x∗minxf(x)\mathop {\min }\limits_x f(x)xminf(x)无约束时,通过求导的方式解决。约束条件(s.t.\text {s.t.}s.t.)有两种:等式约束:hi(x)=0,i=1,2,3,…,mh_{i}(x)=0 , i=1,2,3, \ldots, mhi(x)=0,i=1...原创 2020-03-24 09:09:46 · 1811 阅读 · 0 评论