
DeepSeek+前沿科技
文章平均质量分 84
《DeepSeek 前沿科技》聚焦全球尖端技术突破与深度实践,以“技术驱动未来”为核心视角,解读人工智能、新能源等领域的创新。专栏将剖析DeepSeek在知识管理、大模型研发、智能决策等领域的独家实践,如基于RAG架构的知识系统如何赋能企业高效决策,个性化推荐等复杂问题
meisongqing
系统架构设计,微服务、知识管理,领域驱动设计
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【AI前沿周报】AI大模型最新研究进展汇总
通过改进的CoT微调方法,提升大模型在数学和逻辑推理任务中的表现(GSM8K准确率提升12%)。:提出1.1B参数的轻量级模型,在多个基准测试中接近7B模型性能,聚焦边缘设备部署。:评估GPT-4V在机器人任务规划中的能力,提出新的多模态指令微调方法。:谷歌发布通用视频理解基础模型,支持跨领域视频分析(动作识别、问答等)。:将混合专家(MoE)架构引入多模态模型(视觉-语言),减少计算开销。:通过改进位置编码,将上下文窗口扩展至百万级token(实验性成果)。:新方法防止微调过程中训练数据的隐私泄露。原创 2025-04-14 09:51:48 · 141 阅读 · 0 评论 -
【DeepSeek前沿科技】DeepSeek与Notion知识库搭建指南
使用。原创 2025-04-11 15:52:09 · 611 阅读 · 0 评论 -
前沿科技:社会性交互技术原理与核心概念解析
通过自然语言处理(NLP)分析用户输入的词汇、句法、情感极性(如正面、负面、中性)。:早期融合(特征层结合)、晚期融合(决策层投票)、注意力机制(动态加权模态重要性)。:通过计算机视觉(CV)分析面部表情、肢体语言、微表情(如眉毛动作、嘴角弧度)。:确保生成的语言、表情、动作在情感上一致(如“笑着说悲伤的话”会破坏可信度)。:通过可穿戴设备获取心率、皮肤电反应(EDA)、脑电波(EEG)等生理指标。:提取语音信号的声调、语速、能量等特征,识别情绪(如愤怒、悲伤、兴奋)。我想应该是这样”)。原创 2025-04-08 09:29:55 · 695 阅读 · 0 评论 -
前沿科技:3D生成领域技术与应用分析
3D生成技术正经历从专业工具向普惠化、智能化转型的关键阶段,其核心在于多模态融合、高效算法与开源生态的协同发展。未来,随着硬件普及(如AR/VR)和技术突破,该领域将在娱乐、工业、医疗等领域释放更大潜力,但也需解决数据、质量和效率等瓶颈问题。原创 2025-04-02 08:35:02 · 911 阅读 · 0 评论 -
前沿科技:具身智能(Embodied Intelligence)详解
GitHub仓库:Open Robotics(ROS核心)、Facebook AI Habitat(具身AI仿真):柔性装配(如FANUC CRX协作机器人)、仓储物流(如Amazon Robotics),强调智能的产生不仅依赖大脑(算法),还需身体(物理结构)与环境的动态互动。:机器人算法工程师(运动规划/控制)、感知算法工程师(SLAM/3D视觉):家庭助老(如丰田HSR)、酒店接待(如SoftBank Pepper):核电站巡检(ANYmal)、太空探索(NASA Valkyrie)原创 2025-04-01 08:43:31 · 1036 阅读 · 0 评论 -
Deepseek 个性化决策输出
在教育场景中,通过构建动态用户画像与智能决策模型,教育数字人可基于学生水平实时调整讲解深度,实现精准化、个性化的学习支持。:交互行为(如答题犹豫时间、回放次数)、情绪识别(语音/表情分析)、认知负荷监测(如注意力集中度)。短期反馈:实时监测学生困惑指标(如沉默超时、频繁重复请求),触发讲解重组。:输出决策路径(如“因检测到几何类比能力薄弱,降低抽象证明比例”)。:基于学生语言水平调整词汇难度(如用“斜率”替代“导数变化率”)。:设计教师控制台,允许人工覆盖系统决策(如标记“强制深化讲解”)。原创 2025-03-23 16:21:43 · 708 阅读 · 0 评论 -
DeepSeek如何实现数字人形象与语音合成技术
自研模型减少对第三方 API(如 Epic MetaHuman)的依赖,降低长尾应用成本。:通过模型轻量化(蒸馏、量化)和硬件加速(CUDA/TensorRT)实现低延迟交互。模型(类似 Wav2Lip 但支持 3D),将语音频谱映射到面部动作单元(AU)。(如视觉-语音-文本联合训练的模型),统一处理形象生成、语音合成和对话逻辑。收集用户对数字人行为的反馈,迭代优化模型(如动作自然度评分)。:针对数字人的细分需求(如唇形同步、情感表达)进行专项优化。(类似 FastSpeech 2)实现高速合成,支持。原创 2025-03-26 08:04:01 · 1752 阅读 · 0 评论 -
DeepSeek +飞书多维表格中配置DeepSeek-R1模型
输入具体任务提示词(如“将输入内容改写为小红书风格文案,包含标题、正文和标签”);高级选项:勾选“获取更多信息→输出结果”以生成结构化输出列。原创 2025-03-20 08:31:44 · 1924 阅读 · 0 评论 -
DeepSeek自动生成课程的知识图谱
例如:“线性回归”与“监督学习”是“属于”关系,“梯度下降”与“线性回归”是“优化方法”关系。:如果课程有数据库或表格形式的内容(如课程大纲、知识点列表),可以直接使用。例如:在机器学习课程中,实体可能是“线性回归”、“神经网络”、“梯度下降”。例如:如果“A是B的子类”且“B是C的子类”,则推理出“A是C的子类”。例如:“线性回归”的属性可能包括“定义”、“公式”、“应用场景”。:收集课程的教材、PPT、讲义、视频字幕、作业、考试题等。:识别课程中的核心概念、术语、人物、地点、事件等。原创 2025-03-24 07:36:58 · 1530 阅读 · 0 评论 -
DeepSeek 画“面向对象设计” 知识图谱
通过结合面向对象的设计原则和知识图谱的结构化特性,可以构建出清晰、可维护且易于扩展的数据模型。self.type = type # 关系类型(如"子公司")self.role = role # 属性(如"主编")self.source = source # Entity对象。self.target = target # Entity对象。self.author = author # Author对象。self.book = book # Book对象。# 可视化逻辑(伪代码)原创 2025-03-25 07:56:24 · 921 阅读 · 0 评论 -
DeepSeek写好综述文章 - 提示词
【提示词】我专注于[细胞图像分析]领域的研究,期望深入掌握当前热点与争议点,请推荐3-5个具有研究潜力的具体主题,并标注文献覆盖度。以上主题均存在未充分探索的细分方向(如AI生成合成数据解决标注瓶颈),建议结合实验条件与资源深度切入。:高分辨率成像(如超分辨率显微镜)与多模态数据(荧光、拉曼、质谱)融合可揭示细胞亚结构动态511。:结合单细胞测序与空间成像技术,绘制疾病特异性细胞图谱(如《自然》HCA项目的骨骼发育图谱)11。开发跨模态对齐算法,解决时空分辨率差异(如活细胞动态追踪中的时序同步问题)。原创 2025-03-22 07:48:10 · 879 阅读 · 0 评论 -
Deepseek构建数字人的具体流程
通过AI技术精准复刻真人形象(如新泰医保“小高”的虚拟数字分身),包括外貌、音色、语调和行为风格,确保数字人形象与品牌或服务场景高度契合。:根据应用场景定义数字人职能,例如教育助手(深圳技术大学“润晓知”)、政务主播(“小高讲医保”)或企业智能中枢(马上消费“马小i”)。:构建结构化知识体系,如医保政策库、企业制度文档或招生信息库,通过RAG(检索增强生成)技术实现动态知识更新56。:集成数字人形象与语音合成技术,支持语音对话与表情反馈(如“马小i”的7×24小时服务)。原创 2025-03-22 07:52:14 · 841 阅读 · 0 评论 -
Deepseek生成知识图谱具体流程
从结构化(数据库、表格)、半结构化(XML、JSON)和非结构化(文本、网页)数据中获取信息。:基于预定义规则进行推理(如“A是B的父亲,B是C的父亲,则A是C的祖父”)。:将知识图谱存储在图数据库(如Neo4j)中,便于查询和分析。:使用NLP技术识别文本中的实体(如人名、地点)。:处理不同来源的数据冲突,选择或合并最可信的信息。:提取实体的属性(如人物的出生日期)。:支持复杂查询,如查找某人的所有朋友。:定期更新数据,确保知识图谱的时效性。:识别实体间的关系(如“位于”)。原创 2025-03-24 07:31:11 · 697 阅读 · 0 评论