稳定控制器类别与矩阵代数问题的优化求解
在控制系统和矩阵代数领域,稳定控制器的设计以及矩阵代数问题的求解是非常重要的研究方向。下面将详细介绍稳定控制器的参数化以及通过优化问题求解矩阵代数问题的相关内容。
存在不确定性时稳定控制器的参数化
在实际的控制系统中,过程往往存在不确定性。考虑一个具有加性不确定性的过程 $P(s)$,其表达式为 $P(s) = P_0(s) + r(s)$,其中 $P_0(s)$ 是标称传递函数,$r(s)$ 表示加性结构不确定性,满足 $|P(jω) - P_0(jω)| < |r(jω)|$。
定义闭环传递函数 $T(s) = \frac{C(s)P_0(s)}{1 + C(s)P_0(s)}$,我们的目标是找到能使闭环系统在存在结构不确定性时稳定的补偿器 $C(s)$ 的类别。通常,不确定性可以通过以下归一化方式定义:$\frac{|P(jω) - P_0(jω)|}{|P_0(jω)|} < \frac{|r(jω)|}{|P_0(jω)|}$,在 $s$ 域中可表示为 $\frac{P(s) - P_0(s)}{P_0(s)} = m(s)$,其中 $m(s) = \frac{r(s)}{P_0(s)}$。
我们要找到能使任意过程 $P(s) = P_0(s)[1 + m(s)]$ 稳定的补偿器 $C(s)$,这就要求 $1 + C(s)P(s)$ 的零点(即闭环极点)具有严格负实部。因为 $1 + C(s)P(s) = (1 + C(s)P_0(s))[1 + m(s)\frac{C(s)P_0(s)}{1 + C(s)P_0(s)}]$,它由两个项的乘积组成:$1 + C(s)P_0(s)$ 和 $1 + m(