文章目录
1. 分库实现
- 准备两台机器
192.168.109.132 node01
192.168.109.129 node03
- 准备表文件
#客户表
CREATE TABLE customer (
id INT AUTO_INCREMENT,
name VARCHAR (200),
PRIMARY KEY (id)
) ;
#订单表
CREATE TABLE orders (
id INT AUTO_INCREMENT,
order_type INT,
customer_id INT,
amount DECIMAL (10, 2),
PRIMARY KEY (id)
) ;
#订单详情表
CREATE TABLE orders_detail (
id INT AUTO_INCREMENT,
detail VARCHAR (2000),
order_id INT,
PRIMARY KEY (id)
) ;
#订单状态字典表
CREATE TABLE dict_order_type (
id INT AUTO_INCREMENT,
order_type VARCHAR (200),
PRIMARY KEY (id)
) ;
- 修改schema.xml
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1">
<table name="customer" dataNode="dn2"></table>
</schema>
<dataNode name="dn1" dataHost="localhost1" database="chencc" />
<dataNode name="dn2" dataHost="localhost2" database="chencc" />
<dataHost name="localhost1" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="192.168.109.132:3306" user="root"
password="123456">
</writeHost>
</dataHost>
<dataHost name="localhost2" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM2" url="192.168.109.129:3306" user="root"
password="123456">
</writeHost>
</dataHost>
</mycat:schema>
-
在两个数据节点上分别创建chencc数据库
-
启动mycat的服务
-
在mycat上执行上述建表语句
会发现,customer在node03上,而其他的表在node01上,此时完成了分库的功能。
在插入完成之后会发现,表名是大写的,需要在mysql的配置文件中添加lower_case_table_names=1参数,来保证查询的时候能够进行正常的查询。
2. 分表实现
相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中 包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分 到一个数据库,而另外的某些行又切分到其他的数据库中 。
- 修改schema.xml文件
<schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100" dataNode="dn1">
<table name="customer" dataNode="dn2"></table>
<table name="orders" dataNode="dn1,dn2" rule="mod_rule"></table>
</schema>
- 修改rule.xml文件
<tableRule name="mod_rule">
<rule>
<columns>customer_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<property name="count">2</property>
</function>
- 在node03上创建新的orders表
- 重启mycat
- 插入数据,实现分片
INSERT INTO orders(id,order_type,customer_id,amount) VALUES (1,101,100,100100);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(2,101,100,100300);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(3,101,101,120000);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(4,101,101,103000);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(5,102,101,100400);
INSERT INTO orders(id,order_type,customer_id,amount) VALUES(6,102,100,100020);
- 查看结果
node01:
node03:
3. 常用分片规则
3.1 取模运算(上述分表实现)
3.2 分片枚举
- 修改schema.xml文件
<table name="orders_ware_info" dataNode="dn1,dn2" rule="sharding_by_intfile" ></table>
- 修改rule.xml文件
<!--columns:分片字段, algorithm:分片函数-->
<tableRule name="sharding_by_intfile">
<rule>
<columns>areacode</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<!--mapFile: 标识配置文件名称, type: 0为int型、 非0为String,
defaultNode: 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点,
设置默认节点如果碰到不识别的枚举值,就让它路由到默认节点,如不设置不识别就报错-->
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">1</property>
<property name="defaultNode">0</property>
</function>
- 修改partition-hash-int.txt文件
110=0
120=1
- 重启mycat服务
./mycat restart
- 在mycat上执行sql
CREATE TABLE orders_ware_info (
`id` INT AUTO_INCREMENT COMMENT '编号',
`order_id` INT COMMENT '订单编号',
`address` VARCHAR (200) COMMENT '地址',
`areacode` VARCHAR (20) COMMENT '区域编号',
PRIMARY KEY (id)
) ;
INSERT INTO orders_ware_info(id, order_id,address,areacode) VALUES (1,1,'北京','110');
INSERT INTO orders_ware_info(id, order_id,address,areacode) VALUES (2,2,'天津','120');
3.3 范围分片
- 修改schema.xml文件
<table name="payment_info" dataNode="dn1,dn2" rule="auto_sharding_long" ></table>
- 修改rule.xml文件
<tableRule name="auto_sharding_long">
<rule>
<columns>order_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
- 修改autopartition-long.txt文件
0-102=0
103-200=1
- 重启mycat服务
- 在mycat上执行sql
CREATE TABLE payment_info (
`id` INT AUTO_INCREMENT COMMENT '编号',
`order_id` INT COMMENT '订单编号',
`payment_status` INT COMMENT '支付状态',
PRIMARY KEY (id)
) ;
INSERT INTO payment_info (id,order_id,payment_status) VALUES (1,101,0);
INSERT INTO payment_info (id,order_id,payment_status) VALUES (2,102,1);
INSERT INTO payment_info (id,order_id ,payment_status) VALUES (3,103,0);
INSERT INTO payment_info (id,order_id,payment_status) VALUES (4,104,1);
3.4 范围求模算法
- 修改schema.xml文件
<table name="person" primaryKey="id" dataNode="dn1,dn2" rule="auto-sharding-rang-mod"></table>
- 修改rule.xml
<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
<property name="defaultNode">0</property>
</function>
- 修改partition-range-mod.txt文件
0-1M=1
1M1-2M=1
- 重启mycat服务
- mycat执行sql
CREATE TABLE `person` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(50) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into person(id,name) values(9999,'zhangsan1');
insert into person(id,name) values(10000,'zhangsan2');
insert into person(id,name) values(10001,'zhangsan3');
insert into person(id,name) values(20000,'zhangsan4');
3.5 固定分片hash算法
准备三台机器,node01,node02,node03
- 修改schema.xml文件
- 修改rule.xml
<!--columns标识将要分片的表字段,algorithm为分片函数-->
<tableRule name="rule1">
<rule>
<columns>id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<!--partitionCount为分片个数列表,partitionLength为分片范围列表,分区长度默认最大为1024,即最大支持1024个分区
约束如下:
count,length 两个数组的长度必须是一致的。
1024 = sum((count[i]*length[i])). count 和 length 两个向量的点积恒等于 1024
-->
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>
- 重启mycat服务
- mycat操作sql
CREATE TABLE `user` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(50) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into user(id,name) values(1023,'zhangsan1');
insert into user(id,name) values(1024,'zhangsan2');
insert into user(id,name) values(266,'zhangsan3');
insert into user(id,name) values(255,'zhangsan4');
可以看到结果,1024,255在一个数据分片,266在一个数据分片,1023在一个数据分片。
3.6 取模范围算法
- 修改schema.xml文件
<table name="user2" primaryKey="id" dataNode="dn1,dn2,dn3" rule="sharding-by-pattern"></table>
- 修改rule.xml
<!--
columns标识将要分片的表字段
algorithm为分片函数
mapFile:切分规则配置文件
patternValue:求模基数
defaultNode:默认节点,小于0表示不设置默认节点,大于等于0表示设置默认节点,如果超出配置的范围,则使用默认节点;
-->
<tableRule name="sharding-by-pattern">
<rule>
<columns>id</columns>
<algorithm>sharding-by-pattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPattern">
<property name="mapFile">partition-pattern.txt</property>
<property name="patternVAlue">256</property>
<property name="defaultNode">0</property>
</function>
- 创建partition-pattern.txt文件,并写入规则
创建文件
touch partition-pattern.txt
写入规则:
0-86=0
87-173=1
174-256=2
将文件变成可执行文件:
chmod +x partition-pattern.txt
- 重启mycat服务
- mycat执行sql
CREATE TABLE `user2` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(50) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into user2(id,name) values(85,'zhangsan1');
insert into user2(id,name) values(100,'zhangsan2');
insert into user2(id,name) values(200,'zhangsan3');
85在node01,100在node03,200在node02;
3.7 字符串hash求模范围算法
与取模范围算法类似,该算法支持数值、符号、字母取模,此方式就是将指定位数的字符的ascll码的和进行取模运算
- 修改schema.xml文件
<table name="user3" primaryKey="id" dataNode="dn1,dn2,dn3" rule="sharding-by-prefixpattern"></table>
- 修改rule.xml
<!--
columns标识将要分片的表字段
algorithm为分片函数
mapFile:切分规则配置文件
patternValue:求模基数
prefixLength:ASCII 截取的位数
-->
<tableRule name="sharding-by-prefixpattern">
<rule>
<columns>name</columns>
<algorithm>sharding-by-prefixpattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-prefixpattern" class="io.mycat.route.function.PartitionByPrefixPattern">
<property name="mapFile">partition-pattern.txt</property>
<property name="patternVAlue">256</property>
<property name="prefixLength">5</property>
</function>
- 重启mycat服务
- mycat执行sql
CREATE TABLE `user3` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(50) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into user3(id,name) values(1,'zhangsan');
insert into user3(id,name) values(2,'lisi');
insert into user3(id,name) values(3,'wangwu');
insert into user3(id,name) values(4,'zzzzzzz');
insert into user3(id,name) values(5,'z99');
可以看到数据被分散了,但是因为ascll码值是需要计算的,所以结果可能不是很明显,大家需要自己的拼字符串来试验。
3.8 应用指定的算法
在运行阶段由应用程序自主决定路由到哪个分片
- 修改schema.xml文件
<table name="user4" primaryKey="id" dataNode="dn1,dn2,dn3" rule="sharding-by-substring"></table>
- 修改rule.xml
<!--
columns标识将要分片的表字段
algorithm为分片函数
-->
<tableRule name="sharding-by-substring">
<rule>
<columns>name</columns>
<algorithm>sharding-by-substring</algorithm>
</rule>
</tableRule>
<!--startIndex:截取开始的坐标,size:长度,partitionCount:分片数量-->
<function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0</property>
<property name="size">1</property>
<property name="partitionCount">3</property>
<property name="defaultPartition">0</property>
</function>
- 重启mycat服务
- mycat执行sql
CREATE TABLE `user4` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(50) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into user4(id,name) values(1,'0-zhangsan');
insert into user4(id,name) values(2,'1-lisi');
insert into user4(id,name) values(3,'2-wangwu');
可以看到数据0-zhangsan在node01上,1-lisi在node03上,2-wangwu在node02上
3.9 按照日期范围分片
- 修改schema.xml文件
<table name="login_info" dataNode="dn1,dn2" rule="sharding_by_date" ></table>
- 修改rule.xml文件
<tableRule name="sharding_by_date">
<rule>
<columns>login_date</columns>
<algorithm>shardingByDate</algorithm>
</rule>
</tableRule>
<!--
columns:分片字段, algorithm:分片函数
dateFormat :日期格式
sBeginDate :开始日期
sEndDate:结束日期,则代表数据达到了这个日期的分片后循环从开始分片插入
sPartionDay :分区天数,即默认从开始日期算起,分隔 2 天一个分区
-->
<function name="shardingByDate" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2020-06-01</property>
<property name="sEndDate">2020-06-04</property>
<property name="sPartionDay">2</property>
</function>
- 重启mycat服务
- mycat执行sql
CREATE TABLE login_info
(
`id` INT AUTO_INCREMENT comment '编号',
`user_id` INT comment '用户编号',
`login_date` date comment '登录日期',
PRIMARY KEY(id)
);
INSERT INTO login_info(id,user_id,login_date) VALUES (1,101,'2020-06-01');
INSERT INTO login_info(id,user_id,login_date) VALUES (2,102,'2020-06-02');
INSERT INTO login_info(id,user_id,login_date) VALUES (3,103,'2020-06-03');
INSERT INTO login_info(id,user_id,login_date) VALUES (4,104,'2020-06-04');
INSERT INTO login_info(id,user_id,login_date) VALUES (5,103,'2020-06-05');
INSERT INTO login_info(id,user_id,login_date) VALUES (6,104,'2020-06-06');
3.10 按单月小时分片
此规则是单月内按照小时拆分,最小粒度是小时,可以一天最多24个分片,最少一个分片,一个月完成后下个月开始循环,每个月月尾,需要手工清理数据。
- 修改schema.xml文件
<table name="user6" dataNode="dn1,dn2,dn3" rule="sharding-by-hour"></table>
- 修改rule.xml文件
<tableRule name="sharding-by-hour">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hour</algorithm>
</rule>
</tableRule>
<!--
columns: 拆分字段,字符串类型(yyyymmddHH)
splitOneDay : 一天切分的分片数
-->
<function name="sharding-by-hour" class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">3</property>
</function>
- 重启mycat服务
- mycat执行sql
create table user6(
id int not null,
name varchar(64),
create_time varchar(10)
);
insert into user6(id,name,create_time) values(1,'steven','2022060100');
insert into user6(id,name,create_time) values(2,'steven','2022060101');
insert into user6(id,name,create_time) values(3,'steven','2022060102');
insert into user6(id,name,create_time) values(4,'steven','2022060103');
insert into user6(id,name,create_time) values(5,'steven','2022060104');
insert into user6(id,name,create_time) values(6,'steven','2022060105');
insert into user6(id,name,create_time) values(7,'steven','2022060106');
insert into user6(id,name,create_time) values(8,'steven','2022060107');
insert into user6(id,name,create_time) values(9,'steven','2022060108');
insert into user6(id,name,create_time) values(10,'steven','2022060109');
insert into user6(id,name,create_time) values(11,'steven','2022060110');
insert into user6(id,name,create_time) values(12,'steven','2022060111');
insert into user6(id,name,create_time) values(13,'steven','2022060112');
insert into user6(id,name,create_time) values(14,'steven','2022060113');
insert into user6(id,name,create_time) values(15,'steven','2022060114');
insert into user6(id,name,create_time) values(16,'steven','2022060115');
insert into user6(id,name,create_time) values(17,'steven','2022060116');
insert into user6(id,name,create_time) values(18,'steven','2022060117');
insert into user6(id,name,create_time) values(19,'steven','2022060118');
insert into user6(id,name,create_time) values(20,'steven','2022060119');
insert into user6(id,name,create_time) values(21,'steven','2022060120');
insert into user6(id,name,create_time) values(22,'steven','2022060121');
insert into user6(id,name,create_time) values(23,'steven','2022060122');
insert into user6(id,name,create_time) values(24,'steven','2022060123');
insert into user6(id,name,create_time) values(25,'steven','2022060200');
insert into user6(id,name,create_time) values(26,'steven','2022060201');
insert into user6(id,name,create_time) values(27,'steven','2022060202');
insert into user6(id,name,create_time) values(28,'steven','2022060203');
insert into user6(id,name,create_time) values(29,'steven','2022060204');
insert into user6(id,name,create_time) values(30,'steven','2022060205');
insert into user6(id,name,create_time) values(31,'steven','2022060206');
insert into user6(id,name,create_time) values(32,'steven','2022060207');
insert into user6(id,name,create_time) values(33,'steven','2022060208');
insert into user6(id,name,create_time) values(34,'steven','2022060209');
insert into user6(id,name,create_time) values(35,'steven','2022060210');
insert into user6(id,name,create_time) values(36,'steven','2022060211');
当运行完成之后会发现,第一天的数据能够正常的插入成功,均匀的分散到3个分片上,但是第二天的数据就无法成功分散了,原因就在于我们的数据分片不够,所以这种方式几乎没有人使用。
3.11 日期范围hash分片
思想与范围求模一致,当由于日期在取模会有数据集中问题,所以改成了hash方法。先根据时间hash使得短期内数据分布的更均匀,有点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题,要求日期格式尽量精确,不然达不到局部均匀的目的。
- 修改schema.xml文件
<table name="user7" dataNode="dn1,dn2,dn3" rule="rangeDateHash"></table>
- 修改rule.xml文件
<tableRule name="rangeDateHash">
<rule>
<columns>create_time</columns>
<algorithm>range-date-hash</algorithm>
</rule>
</tableRule>
<!--
columns: 拆分字段,字符串类型(yyyymmddHH)
algorithm:分片函数
sBeginDate:指定开始的日期,与dateFormat格式一致
sPartionDay:代表多少天一组
dateFormat:指定的日期格式,符合java标准
-->
<function name="range-date-hash" class="io.mycat.route.function.PartitionByRangeDateHash">
<property name="sBeginDate">2022-06-01 00:00:00</property>
<property name="sPartionDay">3</property>
<property name="dateFormat">yyyy-MM-dd HH:mm:ss</property>
<property name="groupPartionSize">1</property>
</function>
- 重启mycat服务
- mycat执行sql
create table user7(
id int not null,
name varchar(64),
create_time varchar(20)
);
insert into user7(id,name,create_time) values(1,'steven','2022-06-01 00:00:00');
insert into user7(id,name,create_time) values(2,'steven','2022-06-02 00:00:00');
insert into user7(id,name,create_time) values(3,'steven','2022-06-03 00:00:00');
insert into user7(id,name,create_time) values(4,'steven','2022-06-04 00:00:00');
insert into user7(id,name,create_time) values(5,'steven','2022-06-05 00:00:00');
insert into user7(id,name,create_time) values(6,'steven','2022-06-06 00:00:00');
insert into user7(id,name,create_time) values(7,'steven','2022-06-07 00:00:00');
insert into user7(id,name,create_time) values(8,'steven','2022-06-08 00:00:00');
insert into user7(id,name,create_time) values(9,'steven','2022-06-09 00:00:00');
insert into user7(id,name,create_time) values(10,'steven','2022-06-10 00:00:00');
insert into user7(id,name,create_time) values(11,'steven','2022-06-11 00:00:00');
通过结果也可以看出,每三天一个分片,那么我们只有三个数据节点,所以到10号的数据的时候,没有办法进行数据的插入了,原因就在于没有足够多的数据节点。
3.12 冷热数据分片
- 修改schema.xml文件
<table name="user8" dataNode="dn1,dn2,dn3" rule="sharding-by-hotdate" />
- 修改rule.xml文件
<tableRule name="sharding-by-hotdate">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hotdate</algorithm>
</rule>
</tableRule>
<!--
dataFormat:时间格式化
sLastDay:热数据的天数
sPartionDay:冷数据的分片天数(按照天数分片)
-->
<function name="sharding-by-hotdate" class="io.mycat.route.function.PartitionByHotDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sLastDay">10</property>
<property name="sPartionDay">30</property>
</function>
- 重启mycat服务
- mycat执行sql
CREATE TABLE user8 (
create_time TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP,
`db_nm` VARCHAR (20) NULL
) ;
INSERT INTO user8 (create_time,db_nm) VALUES ('2022-06-01', database());
INSERT INTO user8 (create_time,db_nm) VALUES ('2022-06-10', database());
INSERT INTO user8 (create_time,db_nm) VALUES ('2022-06-11', database());
INSERT INTO user8 (create_time,db_nm) VALUES ('2022-06-21', database());
INSERT INTO user8 (create_time,db_nm) VALUES ('2022-06-30', database());
INSERT INTO user8 (create_time,db_nm) VALUES ('2020-07-01', database());
3.13 自然月分片
- 修改schema.xml文件
<table name="user9" dataNode="dn1,dn2,dn3" rule="sharding-by-month" />
- 修改rule.xml文件
<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-month</algorithm>
</rule>
</tableRule>
<!--
columns: 分片字段,字符串类型
dateFormat : 日期字符串格式
sBeginDate : 开始日期
-->
<function name="sharding-by-month" class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2022-01-01</property>
</function>
- 重启mycat服务
- mycat执行sql
CREATE TABLE user9 (
id INT,
`name` VARCHAR (10),
create_time VARCHAR (20)
) ;
insert into user9(id,name,create_time) values(1,'zhangsan','2022-01-01');
insert into user9(id,name,create_time) values(2,'zhangsan','2022-02-01');
insert into user9(id,name,create_time) values(3,'zhangsan','2022-03-01');
insert into user9(id,name,create_time) values(4,'zhangsan','2022-04-01');
insert into user9(id,name,create_time) values(5,'zhangsan','2022-05-01');
insert into user9(id,name,create_time) values(6,'zhangsan','2022-06-01');
3.14 一致性hash分片
实现方式:一致性hash分片,利用一个分片节点对应一个或者多个虚拟hash桶的思想,,尽可能减少分片扩展时的数据迁移。
优点:有效解决了分布式数据库的扩容问题。
缺点:在横向扩展的时候,需要迁移部分数据;由于虚拟桶倍数与分片节点数都必须是正整数,而且要服从"虚拟桶倍数×分片节点数=设计极限",因此在横向扩容的过程中,增加分片节点并不是一台一台地加上去的,而是以一种因式分解的方式增加,因此有浪费物理计算力的可能性。
- 修改schema.xml文件
<table name="user10" dataNode="dn1,dn2,dn3" primaryKey="id" rule="sharding-by-murmur" />
- 修改rule.xml文件
<tableRule name="sharding-by-murmur">
<rule>
<columns>id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是 0-->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片-->
<property name="virtualBucketTimes">160</property>
<!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是 160 倍,也就是虚拟节点数是物理节点数的 160 倍-->
<!--<property name="weightMapFile">weightMapFile</property>
节点的权重,没有指定权重的节点默认是 1。以 properties 文件的格式填写,以从 0 开始到 count-1 的整数值也就是节点索引为 key,以节点权重值为值。所有权重值必须是正整数,否则以 1 代替 -->
<property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
<!--用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的 murmur hash 值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>
- 重启mycat服务
- mycat执行sql
create table user10(id bigint not null primary key,name varchar(20));
insert into user10(id,name) values(1111111,database());
insert into user10(id,name) values(2222222,database());
insert into user10(id,name) values(3333333,database());
insert into user10(id,name) values(4444444,database());
insert into user10(id,name) values(8960000,database());
4. mycat的分片join
4.1 mycat ER表的分片
在上述中,我们已经将orders进行了数据分片,但是orders表跟orders_detail发生关联,如果只把orders_detail放到一个分片上,那么跨库的join很麻烦,所以提出了ER关系的表分片。什么意思呢?就是通过关联关系,将子表与父表关联的记录放在同一个数据分片上。
- 修改schema.xml文件
<table name ="orders" dataNode="dn1,dn2" rule="mod_rule">
<childTable name="orders_detail" primaryKey="id" joinKey="order_id" parentKey="id" /> </table>
- 在node03上创建orders_detail表
- 重启mycat
- mycat执行sql
INSERT INTO orders_detail(id,detail,order_id) values(1,'detail1',1);
INSERT INTO orders_detail(id,detail,order_id) VALUES(2,'detail1',2);
INSERT INTO orders_detail(id,detail,order_id) VALUES(3,'detail1',3);
INSERT INTO orders_detail(id,detail,order_id) VALUES(4,'detail1',4);
INSERT INTO orders_detail(id,detail,order_id) VALUES(5,'detail1',5);
INSERT INTO orders_detail(id,detail,order_id) VALUES(6,'detail1',6);
- 执行join操作
select * from orders o join orders_detail od on o.id = od.order_id;
4.2 全局表
在分片的情况下,当业务表因为规模而进行分片之后,业务表与这个字典表的之间关联会变得比较棘手,因此,在mycat中存在一种全局表,他具备以下特性:
1、全局表的插入、更新操作会实时的在所有节点上执行,保持各个分片的数据一致性
2、全局表的查询操作,只从一个节点获取
3、全局表可以跟任何一个表进行join操作
- 修改schema.xml文件
<table name="dict_order_type" dataNode="dn1,dn2" type="global"></table>
- 向node03添加dict_order_type表
- 重启mycat
- mycat执行sql
INSERT INTO dict_order_type(id,order_type) VALUES(101,'type1');
INSERT INTO dict_order_type(id,order_type) VALUES(102,'type2');
4.3 Share join
ShareJoin是一个简单的跨分片join,基于HBT的方式实现。目前支持2个表的join,原理是解析SQL语句,拆分成单表的SQL语句执行,然后把各个节点的数据汇集。
- 修改schema.xml
<table name="company" primaryKey="id" dataNode="dn1,dn2,dn3" rule="mod-long" />
<table name="customers" primaryKey="id" dataNode="dn1,dn2" rule="sharding-by-intfile"/>
- 修改rule.xml
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">3</property>
</function>
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
</function>
- 修改partition-hash-int.txt文件
10000=0
10010=1
- 重启mycat
- mycat执行sql
CREATE TABLE company (
id INT PRIMARY KEY,
`name` VARCHAR (10)
) ENGINE = INNODB ;
insert company (id,name) values(1,'cloud');
insert company (id,name) values(2,'abc');
insert company (id,name) values(3,'mnp');
CREATE TABLE customers (
id INT NOT NULL PRIMARY KEY,
`name` VARCHAR (100),
company_id INT NOT NULL,
sharding_id INT NOT NULL
) ;
insert into customers(id,name,company_id,sharding_id)values(1,'zhang',1,10000),(2,'li',2,10010),(3,'wang',3,10000);
- 验证
-- 可以看到有时可以查出对应的结果,有时则查询不到
select a.*,b.ID,b.NAME as tit from customers a,company b where a.COMPANY_ID=b.ID;
--可以看到每次都可以直接查询到结果
/*!mycat:catlet=io.mycat.catlets.ShareJoin */select a.*,b.ID,b.NAME as tit from customers a,company b where a.COMPANY_ID=b.ID;
--其他写法
/*!mycat:catlet=io.mycat.catlets.ShareJoin */select a.*,b.ID,b.NAME as tit from customers a join company b on a.COMPANY_ID=b.ID;
/*!mycat:catlet=io.mycat.catlets.ShareJoin */select a.*,b.ID,b.NAME as tit from customers a join company b where a.COMPANY_ID=b.ID;
5. 全局序列号
5.1 本地文件方式
使用此方式的时候,mycat将sequence配置到文件中,当使用到sequence中的配置,mycat会更新sequence_conf.properties文件中sequence当前的值。
配置方式:
- 在 sequence_conf.properties 文件中做如下配置:
GLOBAL_SEQ.HISIDS=
GLOBAL_SEQ.MINID=10001
GLOBAL_SEQ.MAXID=20000
GLOBAL_SEQ.CURID=10000
其中 HISIDS 表示使用过的历史分段(一般无特殊需要可不配置), MINID 表示最小 ID 值, MAXID 表示最大
ID 值, CURID 表示当前 ID 值。
- server.xml 中配置
<system><property name="sequnceHandlerType">0</property></system>
注: sequnceHandlerType 需要配置为 0,表示使用本地文件方式。
- 重启mycat
- mycat操作sql
create table tab1(id int primary key,name varchar(10));
insert into tab1(id,name) values(next value for mycatseq_global,'test1');
insert into tab1(id,name) values(next value for mycatseq_global,'test2');
insert into tab1(id,name) values(next value for mycatseq_global,'test3');
缺点:当mycat重新发布后,配置文件中的sequence会恢复到初始值
优点:本地加载,读取速度较快
5.2 数据库方式
在数据库中建立一张表,存放sequence名称(name),sequence当前值(current_value),步长(increment int类型,每次读取多少个sequence,假设为K)等信息;
获取数据步骤:
1、当初次使用该sequence时,根据传入的sequence名称,从数据库这张表中读取current_value和increment到mycat中,并将数据库中的current_value设置为原current_value值+increment值。
2、mycat将读取到current_value+increment作为本次要使用的sequence值,下次使用时,自动加1,当使用increment次后,执行步骤1中的操作
3、mycat负责维护这张表,用到哪些sequence,只需要在这张表中插入一条记录即可,若某次读取的sequence没有用完,系统就停掉了,则这次读取的sequence剩余值不会再使用
配置方式:
- 修改server.xml文件
<system><property name="sequnceHandlerType">1</property></system>
- 修改schema.xml文件
<table name="test" primaryKey="id" autoIncrement="true" dataNode="dn1,dn2,dn3" rule="mod-long"/>
<table name="mycat_sequence" primaryKey="name" dataNode="dn2"/>
- 修改mycat配置文件sequence_db_conf.properties,添加属性值
GLOBAL=dn1
COMPANY=dn1
CUSTOMER=dn1
ORDERS=dn1
MYCAT=dn2
- 在dn2上添加mycat_sequence表
DROP TABLE IF EXISTS mycat_sequence;
CREATE TABLE mycat_sequence (name VARCHAR(50) NOT NULL,current_value INT NOT NULL,increment INT NOT NULL DEFAULT 100, PRIMARY KEY(name)) ENGINE=InnoDB;
- 在dn2上的mycat_sequence表中插入初始记录
INSERT INTO mycat_sequence(name,current_value,increment) VALUES ('mycat', -99, 100);
- 在dn2上创建函数
--创建函数
DROP FUNCTION IF EXISTS mycat_seq_currval;
DELIMITER $
CREATE FUNCTION mycat_seq_currval(seq_name VARCHAR(50)) RETURNS varchar(64) CHARSET utf8
DETERMINISTIC
BEGIN
DECLARE retval VARCHAR(64);
SET retval="-999999999,null";
SELECT concat(CAST(current_value AS CHAR),",",CAST(increment AS CHAR)) INTO retval FROM mycat_sequence WHERE name = seq_name;
RETURN retval;
END $
DELIMITER ;
--设置sequence值
DROP FUNCTION IF EXISTS mycat_seq_setval;
DELIMITER $
CREATE FUNCTION mycat_seq_setval(seq_name VARCHAR(50),value INTEGER) RETURNS varchar(64) CHARSET utf8
DETERMINISTIC
BEGIN
UPDATE mycat_sequence
SET current_value = value
WHERE name = seq_name;
RETURN mycat_seq_currval(seq_name);
END $
DELIMITER ;
--获取下一个sequence值
DROP FUNCTION IF EXISTS mycat_seq_nextval;
DELIMITER $
CREATE FUNCTION mycat_seq_nextval(seq_name VARCHAR(50)) RETURNS varchar(64) CHARSET utf8
DETERMINISTIC
BEGIN
UPDATE mycat_sequence
SET current_value = current_value + increment WHERE name = seq_name;
RETURN mycat_seq_currval(seq_name);
END $
DELIMITER ;
数据测试:
- 插入数据表
create table test(id int,name varchar(10));
- 查询对应的序列数据表
SELECT * FROM mycat_sequence;
- 向表中插入数据,可以多执行几次
insert into test(id,name) values(next value for MYCATSEQ_MYCAT,(select database()));
- 查询数据
SELECT * FROM test order by id asc;
5.3 本地时间戳方式
ID= 64 位二进制 (42(毫秒)+5(机器 ID)+5(业务编码)+12(重复累加)。
换算成十进制为 18 位数的 long 类型,每毫秒可以并发 12 位二进制的累加。
- 配置server.xml文件
<property name="sequnceHandlerType">2</property>
- 修改sequence_time_conf.properties
WORKID=06 #任意整数
DATAACENTERID=06 #任意整数
- 修改schema.xml文件
<table name="test2" dataNode="dn1,dn2,dn3" primaryKey="id" autoIncrement="true" rule="mod-long" />
- 启动mycat,并且创建表进行测试
create table test2(id bigint auto_increment primary key,xm varchar(32));
insert into test2(id,xm) values(next value for MYCATSEQ_GLOBAL,'lisi') ;
此方式的优点是配置简单,但是缺点也很明显就是18位的id太长,需要耗费多余的存储空间。