hdu 4686 Arc of Dream【矩阵快速幂】

本文介绍了一种使用矩阵快速幂方法解决ArcofDream问题的方法,包括问题描述、输入输出规范及详细解题过程。适用于对算法优化和矩阵运算感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Arc of Dream

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3523    Accepted Submission(s): 1108


Problem Description
An Arc of Dream is a curve defined by following function:

where
a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
 

Input
There are multiple test cases. Process to the End of File.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 1018, and all the other integers are no more than 2×109.
 

Output
For each test case, output AoD(N) modulo 1,000,000,007.
Sample Input
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
 


Sample Output
4
134
1902
 

题目大意:让你求Aod(n)的值,其中每个元素的计算公式已给出。

分析:因为n比较大,即使是O(n)也是一样会超时,所以我们采用矩阵快速幂的方式来解题。

解题过程+思路:

我们设Fn=an*bn Sn=Sn-1+Fn-1.

这个时候我们能够通过Fn-1和Sn-2来得到Sn-1

Sn-1=Sn-2+Fn-1.

其中an和bn还有两个公式,我们将其展开。

Fn=(an*bn)=(an-1*ax+ay)*(bn-1*bx+by)=an-1*bn-1*ax*bx+an-1*ax*ay+ay*bn-1*bx+ay*by;

这个时候我们只需要五维矩阵就能求出Sn-1:

求得矩阵为:

这个时候我们只需要n-1幂矩阵然后乘上由F1 a1 b1 1 s0构成的矩阵即可得到所求解、

最终我们推出的式子清晰的描述为这样:


AC代码:

#include<stdio.h>
#include<string.h>
using namespace std;
#define ll __int64
#define mod  1000000007
typedef struct Matrix
{
    ll mat[7][7];
}matrix;
matrix A,B,tmp;
Matrix matrix_mul(matrix a,matrix b)
{
    matrix c;
    memset(c.mat,0,sizeof(c.mat));
    int i,j,k;
    for(int i=0;i<5;i++)
    {
        for(int j=0;j<5;j++)
        {
            for(int k=0;k<5;k++)
            {
                c.mat[i][j]+=(a.mat[i][k]*b.mat[k][j])%mod;
                c.mat[i][j]%=mod;
            }
        }
    }
    return c;
}
Matrix matrix_quick_power(matrix a,ll k)//矩阵快速幂0.0
{
    matrix b;
    memset(b.mat,0,sizeof(b.mat));
    for(int i=0;i<5;i++)
    b.mat[i][i]=1;//单位矩阵b
    while(k)
    {
        if(k%2==1)
        {
            b=matrix_mul(a,b);
            k-=1;
        }
        else
        {
            a=matrix_mul(a,a);
            k/=2;
        }
    }
    return b;
}
int main()
{
    ll n;
    ll a,ax,ay,b,bx,by;
    while(~scanf("%I64d%I64d%I64d%I64d%I64d%I64d%I64d",&n,&a,&ax,&ay,&b,&bx,&by))
    {
        if(n==0)
        {
            printf("0\n");
            continue;
        }
        ll a1=(a*ax+ay)%mod;
        ll b1=(b*bx+by)%mod;
        ll f1=(a1*b1)%mod;
        ll s0=(a*b)%mod;
        memset(tmp.mat,0,sizeof(tmp.mat));
        tmp.mat[0][0]=f1;
        tmp.mat[1][0]=a1;
        tmp.mat[2][0]=b1;
        tmp.mat[3][0]=1;
        tmp.mat[4][0]=s0;
        memset(A.mat,0,sizeof(A.mat));
        A.mat[0][0]=(ax*bx)%mod;A.mat[0][1]=(ax*by)%mod;A.mat[0][2]=(ay*bx)%mod;A.mat[0][3]=(ay*by)%mod;A.mat[0][4]=0;
        A.mat[1][0]=0;          A.mat[1][1]=ax%mod;     A.mat[1][2]=0;          A.mat[1][3]=ay%mod;     A.mat[1][4]=0;
        A.mat[2][0]=0;          A.mat[2][1]=0;          A.mat[2][2]=bx%mod;     A.mat[2][3]=by%mod;     A.mat[2][4]=0;
        A.mat[3][0]=0;          A.mat[3][1]=0;          A.mat[3][2]=0;          A.mat[3][3]=1;          A.mat[3][4]=0;
        A.mat[4][0]=1;          A.mat[4][1]=0;          A.mat[4][2]=0;          A.mat[4][3]=0;          A.mat[4][4]=1;
        B=matrix_quick_power(A,n-1);
        B=matrix_mul(B,tmp);
        printf("%I64d\n",B.mat[4][0]);
    }
}






### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值