Arc of Dream
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3523 Accepted Submission(s): 1108
Problem Description
An Arc of Dream is a curve defined by following function:

where
a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?

where
a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
Input
There are multiple test cases. Process to the End of File.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 1018, and all the other integers are no more than 2×109.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 1018, and all the other integers are no more than 2×109.
Output
For each test case, output AoD(N) modulo 1,000,000,007.
Sample Input
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
Sample Output
4
134
1902
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
Sample Output
4
134
1902
题目大意:让你求Aod(n)的值,其中每个元素的计算公式已给出。
分析:因为n比较大,即使是O(n)也是一样会超时,所以我们采用矩阵快速幂的方式来解题。
解题过程+思路:
我们设Fn=an*bn Sn=Sn-1+Fn-1.
这个时候我们能够通过Fn-1和Sn-2来得到Sn-1
Sn-1=Sn-2+Fn-1.
其中an和bn还有两个公式,我们将其展开。
Fn=(an*bn)=(an-1*ax+ay)*(bn-1*bx+by)=an-1*bn-1*ax*bx+an-1*ax*ay+ay*bn-1*bx+ay*by;
这个时候我们只需要五维矩阵就能求出Sn-1:
求得矩阵为:
这个时候我们只需要n-1幂矩阵然后乘上由F1 a1 b1 1 s0构成的矩阵即可得到所求解、
最终我们推出的式子清晰的描述为这样:
AC代码:
#include<stdio.h>
#include<string.h>
using namespace std;
#define ll __int64
#define mod 1000000007
typedef struct Matrix
{
ll mat[7][7];
}matrix;
matrix A,B,tmp;
Matrix matrix_mul(matrix a,matrix b)
{
matrix c;
memset(c.mat,0,sizeof(c.mat));
int i,j,k;
for(int i=0;i<5;i++)
{
for(int j=0;j<5;j++)
{
for(int k=0;k<5;k++)
{
c.mat[i][j]+=(a.mat[i][k]*b.mat[k][j])%mod;
c.mat[i][j]%=mod;
}
}
}
return c;
}
Matrix matrix_quick_power(matrix a,ll k)//矩阵快速幂0.0
{
matrix b;
memset(b.mat,0,sizeof(b.mat));
for(int i=0;i<5;i++)
b.mat[i][i]=1;//单位矩阵b
while(k)
{
if(k%2==1)
{
b=matrix_mul(a,b);
k-=1;
}
else
{
a=matrix_mul(a,a);
k/=2;
}
}
return b;
}
int main()
{
ll n;
ll a,ax,ay,b,bx,by;
while(~scanf("%I64d%I64d%I64d%I64d%I64d%I64d%I64d",&n,&a,&ax,&ay,&b,&bx,&by))
{
if(n==0)
{
printf("0\n");
continue;
}
ll a1=(a*ax+ay)%mod;
ll b1=(b*bx+by)%mod;
ll f1=(a1*b1)%mod;
ll s0=(a*b)%mod;
memset(tmp.mat,0,sizeof(tmp.mat));
tmp.mat[0][0]=f1;
tmp.mat[1][0]=a1;
tmp.mat[2][0]=b1;
tmp.mat[3][0]=1;
tmp.mat[4][0]=s0;
memset(A.mat,0,sizeof(A.mat));
A.mat[0][0]=(ax*bx)%mod;A.mat[0][1]=(ax*by)%mod;A.mat[0][2]=(ay*bx)%mod;A.mat[0][3]=(ay*by)%mod;A.mat[0][4]=0;
A.mat[1][0]=0; A.mat[1][1]=ax%mod; A.mat[1][2]=0; A.mat[1][3]=ay%mod; A.mat[1][4]=0;
A.mat[2][0]=0; A.mat[2][1]=0; A.mat[2][2]=bx%mod; A.mat[2][3]=by%mod; A.mat[2][4]=0;
A.mat[3][0]=0; A.mat[3][1]=0; A.mat[3][2]=0; A.mat[3][3]=1; A.mat[3][4]=0;
A.mat[4][0]=1; A.mat[4][1]=0; A.mat[4][2]=0; A.mat[4][3]=0; A.mat[4][4]=1;
B=matrix_quick_power(A,n-1);
B=matrix_mul(B,tmp);
printf("%I64d\n",B.mat[4][0]);
}
}