- 算法实现伪代码
1.1 术前基线大模型(PreOpNet)
class PreOpNet:
def __init__(self):
self.image_encoder = Swin3DEncoder()
self.text_encoder = PMCLLaMA()
self.fusion = CrossAttentionFusion()
self.head = MultiTaskHead(tasks=['ICH_volume', '30d_mortality', 'early_deterioration'])
def forward(self, image, text, tabular):
z_img = self.image_encoder(image)
z_txt = self.text_encoder(text)
z_tab = TabNet(tabular)
z_fuse = self.fusion(z_img, z_txt, z_tab)
outputs = self.head(z_fuse)
return outputs
def training_step(self, batch):
x, y = batch
y_hat = self(*x)
loss = focal_loss(y_hat, y)
return loss
1.2 术中增量学习(IntraOpNet)
class IntraOpNet:
def __init__(self, pretrained: PreOpNet):
self.backbone = pretrained.image_encoder
self.lstm = StreamingLSTM()
self.head = RiskHead()
self.buffer = ReplayBuffer(max_size=5000)
def online_step(self, stream):
for frame in stream:
x = preprocess(frame)
z = self.backbone(x)
h = self.lstm(z)
risk = self.head(h)
self.buffer.add((x, risk))
if risk > threshold:
trigger_alert()
if len(self.buffer) % 100 == 0:
self.update(buffer.sample(64))
1.3 术后并发症预测(PostComNet)
class PostComNet(nn.Module):
def __init__(self):
self.tcn = TemporalConvNet(input_dim=128, num_channels=[64,64,32])
self.attention = MultiHeadAttention(d_model=32)
self.classifier = nn.Linear(32, n_complications)
def forward(self, vitals, labs, notes):
x = concatenate(vitals, labs, notes)
x = self.tcn(x)
x, _ = self.attention(x, x, x)
return self.classifier(x[:, -1, :])
- 模块级系统流程图
2.1 术前系统(PreOpSystem)