树和二叉树的定义
树
树是一个或多个结点的有限集合,存在一个为根的特定结点,其余结点被分为n个无不相交集合,T1,T2,T3……Tn,其中的每一个集合都是一棵树,T1,T2……Tn为根结点的子树。
结点:树中一个独立单元
结点的度:结点拥有的子树数称为结点的度
树的度:树内各结点度的最大值
叶子:度为0的结点或终端结点
非终端结点:度不为0的结点
双亲和孩子:结点的子树的根称为该结点的孩子,该结点称为孩子的双亲
层次:结点的层次从根开始定义,根为第一层,根的孩子为第二层,以此类推
树的基本性质
1.树中所有结点数等于所有结点的度数之和加一(这个一就是根结点)
2.对于度为m的树,第i层最多有m的i-1次幂个结点
3.对于高度为h,度为m的树,最多有(m的h幂-1)/(m-1)个结点(等比数列求和)
二叉树
二叉树是n个结点所构成的集合,它或为空树(n=0)或为非空树
对于非空树T
1.有且仅有一个根结点
2.除根结点以外的其余结点分为两个互不相交的子集T1和T2,分别称为T的左子树和右子树,且T1和T2本身都是二叉树
3.二叉树每一个结点至多有两棵子树
4.二叉树的子树有左右之分,其次序不能颠倒
二叉树的基本形态
二叉树的性质
性质一:二叉树的第i层最多有2的i-1次幂个结点(i>=1)
性质二:深度为k的二叉树最多有2的k次幂-1个结点
性质三:对于任何非空的二叉树T,如果叶子结点的个数为n0,而度为2的结点数为n2,则n0=n2+1
总度数:n1×1+n2×2+1=总结点数:n0+n1+n2
特殊二叉树
1.满二叉树 2.完全二叉树 3.斜树 4.二叉排序树 5.二叉搜索树
满二叉树:所有叶子结点只出现在最后一排,深度为k且含有2^k-1的结点的二叉树
对于同样深度的二叉树,满二叉树的结点数最多,叶子结点的数量也最多,如果对满二叉树进行缩写,根结点从1开始,从上到下,从左到右,对于编号为i的结点,若存在孩子,则左孩子的编号为2i,右孩子的编号为2i+1
完全二叉树:深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中的编号一一对应时,称为完全二叉树
特点:
1.叶子结点只能在倒数第一层和倒数第二层上出现
2.对任意一个结点,若其右分支下的子孙的最大层次为i,则其左分支下的子孙的最大层次为1或i+1
3.没有左子树,不能有右子树,上一层没有铺满,不能有下一层
性质
1.具有n个结点的完全二叉树的深度为log2n+1(向下取整)
2.如果对一颗有n个结点的完全二叉树的结点按层序编号,则对任意结点i,以下结论成立:
1.i=1,结点i是根,无双亲,如果i>1则其双亲是i/2(向下取整)
2.2i>n,则i无左孩子,否则其左孩子是2i
3.如果2i+1>n,则该结点i无右孩子,否则其右孩子是2i+1
例题
1.
答案:完全二叉树的叶子结点只能在最后两层出现,求最多只能让第六层为倒数第二层,7^2-1-8×2=111
答案:总结点数n=n0+n1+n2,n0=n2+1,n=2×n2+n1+1,因为n为偶数,有一个度为一的结点,带入n2=383,n0=384
答案:题目表示叶节点只在最后一层,设高度为h,2^(h-1)=k,h=log2k+1=log2 2k
2^n-1=2k-1
二叉树的实现
二叉树的存储
1.顺序结构:除满二叉树和完全二叉树外,不适用,浪费空间
2.链式结构
1.二叉树的存储
typedef char ElemType;
typedef struct TreeNode
{
ElemType data;
struct TreeNode* lchild;
struct TreeNode* rchild;
}TreeNode;
typedef TreeNode* BiTree;
2.创建二叉树
以前序输出的形式构建一个如下图的二叉树
char str[] = "ABDH#K###E##CFI###G#J##";
int index = 0;
void creatTree(BiTree* t)
{
ElemType ch;
ch = str[index++];
if (ch == '#')
{
*t = NULL;
}
else
{
*t = (BiTree)malloc(sizeof(TreeNode));
(*t)->data = ch;
creatTree(&((*t)->lchild));
creatTree(&((*t)->rchild));
}
}
3.二叉树的前序遍历
void preOrder(BiTree t)
{
if (t == NULL)
{
return;
}
printf("c", t->data);
preOrder(t->lchild);
preOrder(t->rchild);
}
4.二叉树的中序遍历
先访问根结点,向树的左下方移动,直到遇到空结点为止,然后访问空结点的父节点,接着继续遍历该结点的右子树,如果右子树没有子树可以遍历,那么继续遍历上层最后一个未被访问的结点
void inOrder(BiTree t)
{
if (t == NULL)
{
return;
}
inOrder(t->lchild);
printf("c", t->data);
inOrder(t->rchild);
}
5.二叉树的后序遍历
从根结点开始访问结点左右子树,再对该结点进行访问,这意味着该结点的子节点在该结点之前输出
void postOrder(BiTree t)
{
if (t == NULL)
{
return;
}
postOrder(t->lchild);
postOrder(t->rchild);
printf("c", t->data);
}
在主函数上来验证上述功能
int main()
{
TreeNode* t;
creatTree(&t);
preOrder(t);
printf("\n");
inOrder(t);
printf("\n");
postOrder(t);
printf("\n");
return 0;
}
运行结果
符合代码运算逻辑