深度学习参数可视化黑科技-TensorBoard 使用方法

本文详细介绍了TensorBoard的安装与使用,如何通过Python代码记录训练数据并实时可视化,对于理解模型进展和优化至关重要。通过TensorBoardX和实际例子,探索如何在Windows和Linux环境下启动可视化界面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

举例什么是TensorBoard ?

        Tensorboard原本是Google TensorFlow的可视化工具,可以用于记录训练数据、评估数据、网络结构、图像等,并且可以在web上展示,对于观察神经网络的过程非常有帮助。

TensorBoard 安装和使用

window下:轻松简单好多~

基于anaconda环境管理,在Anaconda Prompt中操作(terminal应该也可以)

step1:进入你想将TensorBoard安装的虚拟环境

conda activate EnvName

step2:安装tensorboardX 和 tensorboard

conda install tensorboardX        

conda install tensorboard

step3:检查是否安装成功 

python     

from tensorboardX import SummaryWriter

举例: 

  step4:首先运行测试代码

import os
from tensorboardX import SummaryWriter
# 写入到当前的log文件夹下(先创建一个同级的log文件夹)
if not os.path.exists('log'):
    os.mkdir('log')
#先实例化SummaryWriter类,指明记录日志的路径信息
writer = SummaryWriter('log')
for i in range(100):
    writer.add_scalar('a', i, global_step=i)
    writer.add_scalar('b', i**3+5,global_step=i)
# 关闭读写器
writer.close()

step6:会在同级目录生成一个log文件 tensorboard可视化的就是这个log里面的文件!     然后再Anaconda Prompt中安装tensorboard的环境中输入

tensorboard --logdir=D:\Works\log --port 6006

 D:\Works\log是Tensorboard_example.py脚本保存log的位置

 port 6006:6006可以自己随意设置     

step7:然后将得到的http://localhost:6006/ 用浏览器打开,注意这个时候Anaconda Prompt         中命令还是在运行的,不能中止命令,否则连接打不开!

 linux下:通过SSH连接服务器时可视化需要进行一些手法

安装和linux下不在此赘述,直接介绍可视化手法:

如果直接在服务器上有可视化界面,可以打开服务器上的浏览器进行类似 window下操作,但是要是通过SSH连接服务器,就很麻烦了

MOBAXTERM为例,通过SSH使用linux下TensorBoard:

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值