利用卷积神经网络训练鸢尾花数据

本文介绍如何运用深度卷积神经网络来区分鸢尾花数据,通过numpy和pandas库加载数据,sklearn库辅助处理。经过训练,模型在1000次迭代后达到0.96以上的准确率,提供了鸢尾花数据集的下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇文章介绍了鸢尾花特征的可视化,这篇文章利用深度卷积神经网络来区分鸢尾花数据集,主要利用了numpy库和pandas.sklearn库,首先利用pandas库中指令来读取数据集,数据集在文章尾部有下载链接,代码如下,代码中有相应的解释

# -*- coding: utf-8 -*-
"""
Created on Sat May 15 15:39:06 2021

@author: apple
"""
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

iris=pd.read_csv('C:/Users/apple/Desktop/iris_training.csv')
x=iris.values[:,0:4]
y=iris.values[:,4]#读取数据,分为数据和索引

x=x/8*0.99+0.01 #归一化数据
def sigmiod(X):
    return 1/
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值