深入解析Raymond基于树的分布式互斥算法
1. 算法概述
Raymond基于树的互斥算法旨在利用计算机网络的生成树来减少每次临界区执行时交换的消息数量。在轻负载情况下,该算法仅需交换 $O(log N)$ 条消息;在重负载情况下,大约交换四条消息即可执行临界区,其中 $N$ 为网络中的节点数量。
此算法有一些前提假设:底层网络能保证消息传递,但无法预测消息到达的时间和顺序,且网络中的所有节点完全可靠(在讨论节点故障之前)。若将网络视为图,节点为图的顶点,节点间的链接为图的边,那么 $N$ 个节点的网络生成树是包含所有 $N$ 个节点的树,最小生成树则是具有最小成本的树,成本函数通常基于网络链接特性。该算法基于网络拓扑或逻辑结构的最小生成树运行。
网络节点被组织成无根树结构,节点间的消息沿树的无向边传输。每个节点只需保存其直接相邻节点的信息并与之通信。
该算法引入了“特权”概念,类似于基于令牌的算法中的令牌,用于表示哪个节点有权进入临界区。任何时刻,除特权以“PRIVILEGE”消息形式在节点间传输外,只有一个节点能拥有特权,此节点称为“特权节点”。当无节点请求特权时,特权由最后使用它的节点持有。
2. HOLDER变量
每个节点维护一个“HOLDER”变量,用于提供与自身相关的特权位置信息。节点在其“HOLDER”变量中存储它认为拥有特权或能导向拥有特权节点的标识。所有节点的“HOLDER”变量共同维护从每个节点到拥有特权节点的有向路径。
例如,若节点 $G$ 拥有特权,各节点的“HOLDER”变量值如下:
- $HOLDER_A = B$
- $HOLDER_B = C$