显卡、GPU和CUDA关系

显卡是计算机中用于数模信号转换的关键组件,早期的显卡仅处理基本信号输出,随着发展出现了GPU概念。GPU是图形处理单元,Nvidia提出的CUDA使得非图形处理任务也能利用GPU的并行计算能力。CPU主要负责逻辑处理和串行计算,GPU专注并行计算。CUDA提供了一种使用类似C语言的CUDA C来直接利用GPU计算的平台。显卡分为独立显卡和集成显卡,其中独立显卡性能通常优于集成显卡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明:
本文部分内容来自网络。由于知识有限,有错误的地方还请指正。本文仅作学术交流,如有侵权,请联系后台删除
 
什么是显卡?
    显卡(Video card,Graphics card)全称显示接口卡,又称显示适配器,是计算机最基本配置、最重要的配件之一。就像电脑联网需要网卡,主机里的数据要显示在屏幕上就需要显卡。因此,显卡是电脑进行数模信号转换的设备,承担输出显示图形的任务。具体来说, 显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来。
    原始的显卡一般都是集成在主板上,只完成最基本的信号输出工作,并不用来处理数据。随着显卡的迅速发展,就出现了GPU的概念,显卡也分为独立显卡和集成显卡(见附1)。
 
什么是GPU?
    GPU这个概念是由Nvidia公司于1999年提出的。GPU是显卡上的一块芯片,就像CPU是主板上的一块芯片。那么1999年之前显卡上就没有GPU吗?当然有,只不过那时候没有人给它命名,也没有引起人们足够的重视,发展比较慢。
    自Nvidia提出GPU这个概念后,GPU就进入了快速发展时期。简单来说,其经过了以下几个阶段的发展:
1) 仅用于图形渲染,此功能是GPU的初衷,这一点从它的名字就可以看出:Graphic Processing Unit,图形处理单元;
2)后来人们发现,GPU这么一个强大的器件只用于图形处理太浪费了,它应该用来做更多的工作,例如浮点运算。怎么做呢?直接把浮点运算交给GPU是做不到的,因为它只能用于图形处理(那个时候)。最容易想到的,是把浮点运算做一些处理,包装成图形渲染任务,然后交给GPU来做。这就是 GPGPU(General Purpose GPU)的概念。不过这样做有一个缺点,就是你必须有一定的图形学知识,否则你不知道如何包装。
3)于是,为了让不懂图形学知识的人也能体验到GPU运算的强大,Nvidia公司又提出了CUDA的概念。
 
什么是CUDA?
    CUDA(Compute Unified Device Ar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值