论文修改建议 (ZhangJ 20211102 应用型论文的痛)

本文讨论了提高算法研究质量的关键因素,包括技术创新、方法多样性和数据集丰富性等,并强调了物理意义解释及定制化算法的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 技术不够炫. 如果没有原始创新, 那至少技术要够新.
  2. 比较方法单一 (SVM)
  3. 数据集少 (仅一个数据集)
  4. 缺乏足够的物理意义解释
  5. 缺乏对数据本身特性的分析 (定制算法, 调整参数), 从应用背景多做分析. 想要一个普适性的算法, 还是专门为某个具体应用获得有意义的结果?
  6. 比较图要清晰, 易于辨识. 如果重叠的话, 用不同的标识 (+, *, o).
  7. “设计属性提取算法”. 实际上, 神经网络才是最好的属性提取器.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值