技术不够炫. 如果没有原始创新, 那至少技术要够新.比较方法单一 (SVM)数据集少 (仅一个数据集)缺乏足够的物理意义解释缺乏对数据本身特性的分析 (定制算法, 调整参数), 从应用背景多做分析. 想要一个普适性的算法, 还是专门为某个具体应用获得有意义的结果?比较图要清晰, 易于辨识. 如果重叠的话, 用不同的标识 (+, *, o).“设计属性提取算法”. 实际上, 神经网络才是最好的属性提取器.