
开发笔记
文章平均质量分 67
机器学习算法开发,包括推荐系统、主动学习等
闵帆
机器学习算法 Java 程序员
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
学院派的项目文档
麻雀虽小, 五脏俱全. 学院派的项目开发, 至少需要一系列的文档, 保证完备性.原创 2021-12-03 15:36:48 · 377 阅读 · 0 评论 -
CMALE 开发过程管理
Cost-sensitive multi-label active learning 是我们正在进行的工作. 这里分析相关程序.1. 工具类 SimpleTools.java数据random方法normalize: 数据归一化mergeSortToIndices: 逆序获得下标数组getRandomOrder: 获得随机下标数组, 支持数据乱序2. 数据管理读入 arff 文件, 存储成一个数据矩阵和标签矩阵数据dataMatrix: 数据矩阵labelMatrix: 标签原创 2021-09-21 18:07:20 · 192 阅读 · 0 评论 -
产量预测建模 4: 粒计算的角度
可以把产量预测问题按不同粒度建模.1. 按时长划分从预测时长的角度, 可以分为长期、中期、短期.1.1 长期预测对油田整个生命周期进行建模, 以年为单位.输入: 油田的地质信息, 包括: 反演结果解释、地层构造等等.输出 (预测):油田的储量.油田的可开采比例.油田各阶段 (上升期、稳定期、下降期) 各自的时长与产量.1.2 中期预测以月为单位进行分析.输入: 产量历史数据, 措施历史数据.输出:接下来几个月的产量;措施建议;阶段转换预警 (如从稳产期转向减产期, 或从原创 2021-06-22 20:03:18 · 325 阅读 · 0 评论 -
产量预测建模 3: 多时序模型
在实际的生产中, 有多个时序数据. 因此有必要建议多时序模型.1. 同步时序模型将如下数据按月进行统计, 即每月一个数据点, 获得多时序:产油量 (o), 产气量 (g), 产水量 (w), 井口压力 (p), 注水量 (i), 井口注入压力 (l).多时序函数 f(A,T)f(\mathbf{A}, \mathbf{T})f(A,T), 其中 A={o,g,w,p,i,l}\mathbf{A} = \{\rm{o}, \rm{g}, \rm{w}, \rm{p}, \rm{i}, \rm{l}\}原创 2021-06-14 18:38:09 · 755 阅读 · 1 评论 -
产量预测建模 2: 静态结构化数据模型
所谓静态模型, 是与动态 (时序) 模型相对应, 只需要考虑某个时间点的结构化数据即可.1. 基于结构化地质数据总产量预测模型地质数据包括: 储层孔隙度等.表 1. 油田总产量与基础数据的关系油田编号孔隙度渗透率裂缝岩石的亲水性产量10.250.070.070.0724.520.300.090.060.0733.630.350.080.070.0720.8如果能获得这类的结构化数据, 用许多经典的机器学习方法就可以预测了.原创 2021-06-14 13:30:37 · 660 阅读 · 1 评论 -
产量预测建模 1: 线性模型
要想从根本上理解产量预测, 就应该从最简单、最不靠谱模型出发.1. 产量时序模型采用线性或准线性模型.1.1 常数模型在一个比较短的时期, 可采用本模型. 日产油量为常数p(1)p \tag{1}p(1).模型优点:对一个较短的时期 (如一个月) 可能非常有效.ppp 可以通过当前观测得出.模型缺点:很难称其为一个模型.1.2 线性递减模型油井生产分为若干阶段, 其开始的标志包括: 开始生产、措施 (洗井、清防蜡等) 结束后重新生产. 令阶段开始的产量为 ppp, 线性递减系原创 2021-06-14 09:38:59 · 2386 阅读 · 1 评论 -
从二阶导数到平面波
1. 二阶导数为方便起见,以下均用偏微分方式表示。函数f(x)f(x)f(x)在点x−Δxx - \Delta xx−Δx的导数为∂f(x−Δx)∂x=f(x)−f(x−Δx)Δx(1)\frac{\partial f(x - \Delta x)}{\partial x} = \frac{f(x) - f(x - \Delta x)}{\Delta x} \tag{1}∂x∂f(x−Δx)=Δxf(x)−f(x−Δx)(1)函数f(x)f(x)f(x)在点xxx的导数为∂f(x)∂x=f(x+原创 2020-10-24 10:27:26 · 1041 阅读 · 0 评论 -
高阶完全非线性偏微分方程组的机器学习近似算法(笔记)
将神经网络方法应用于偏微分方程,是近年的一个前沿方向。本文是对论文Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations的初步理解,仅作为笔记。原创 2020-11-13 14:56:25 · 2178 阅读 · 0 评论 -
静校正问题及其深度学习方法
一. 静校正动机叠加多炮对同一个地下观测点均获得相应的数据,使用叠加可以提高该数据的稳定、可靠性(信噪比)困难不正确的叠加导致图像模糊静校正的作用提高信噪比二. 问题描述问题输入道集:n * k的矩阵,其中,n表示时间点个数,k表示道数(不同的道对应于同一个中心点)问题输出2.1 每个道的校正量(k−1k - 1k−1个,或 kkk个)2.2 校正后的道数据:n×1n \times 1n×1向量优化目标max∑i=1nei2(1)\max \sum_{i = 1}^n原创 2020-10-26 17:09:44 · 1591 阅读 · 3 评论 -
产量预测建模 x: 开始阶段思路有点乱
摘要: 在油田开发过程中,随着注水和底层压力变化,产油会发生改变。使用传统油气藏模型,在一些井上产油和产液的变化趋势与与预测不一致。机器学习为该类问题提供了新的解决思路。本文旨在理清产量预测的若干问题,为后面的研究工作打下基础。I. 引言多数机器学习问题本质上是约束满足问题(Constraint satisfaction problem, CSP),需要说清楚输入(Input)、输出(Output)、优化目标(Optimization objective)、约束条件(Constraint)。机器学习算法原创 2021-05-07 14:39:34 · 1267 阅读 · 1 评论 -
地球科学基本概念理解(笔记)
地球科学在计算机科学的辅助下,近年获得跨越式发展。本文从问题及动机的角度分析一些基本概念,仅为笔记。1. 勘探勘探是人类为了获得地球的地质情况进行的研究工作,其最终目的是对地球(特别是近地面)建立一个完备的三维模型,以掌握什么地方有什么矿藏、油气,以及储量。由于地层结构的复杂性、物质的不透明性,了解地球有时比了解太空更困难,成本更高昂,所使用的设备更尖端。2. 测井测井 (well testing) 是指在地球上打一口井,将其中物质取出来,直接分析地质构造的过程。这相当于对地球做开颅手术。如果可以打原创 2020-12-08 17:54:11 · 1277 阅读 · 0 评论