[AI算法] LLM中LoRA的占用显存没有减少多少?

Lora为什么没有减少多少显存

  • 在使用 PEFT(Parameter-Efficient Fine-Tuning) 方法(如 LoRA、IA³ 等)时,你可能会观察到:即使只微调了少量参数,模型的显存占用却比预期高很多。这通常是因为:
  • lora的lora.linear输出的feature map和原始的是一样大小的,而且和原始的可能要通过参数设置来融合到一起,送到后面。

计算图(Autograd Graph)依然完整构建,导致中间 feature map 无法被及时释放。

在这里插入图片描述
在这里插入图片描述

几种Freeze的设置方式

torch.no_grad

  • 不会产生计算图,这个更加节省显存

require_grad=False

  • 不一定避免计算图,只是不申请空间放grad或者不回传grad了

eval()

  • 梯度的设置上和require_grad类似,但是对于BN/Dropout的设置和training存在一定的差异
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值