
机器学习
机器学习
~华仔呀
-----------
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes论文解读
本文是将参照二维Harris角点检测改进而来,目的是在三维点云中检测出关键点。 1、计算Harris算子 为了计算导数,我们将二次曲面拟合到以下点上变换点的集合。利用最小平方法,我们找到一个抛物线的形式。 我们选择了一个只有6个项的二次曲面,因为它代表一个抛物线。也就是说,如果我们需要一个带有二次项的两个变量的函数,它是最佳选择。增加更多的项意味着可以拟合一个更复杂的曲面。然而,更复杂的曲面在域的某些点上没有定义好的导数。此外,我们需要一个简单的表达式来应用导数。由于我们对点v中的导数感兴趣,我们原创 2020-08-06 22:30:16 · 1713 阅读 · 0 评论 -
余弦相似度
余弦相似度 可以用于计算两篇文章的相似情况。 步骤: 一、每篇文章各取出若干个关键词,合并成一个集合 二、计算每篇文章对于这个集合中的词的词频 三、生成两篇文章各自的词频向量;生成两篇文章各自的词频向量 四、计算两个向量的余弦相似度,值越大就表示越相似。计算两个向量的余弦相似度,值越大就表示越相似。 ...原创 2020-07-16 22:50:05 · 313 阅读 · 0 评论 -
TF-IDF算法
TF-IDF算法 某个词的TF-IDF值就越大,说明该词对文章的重要性越高,越有可能成为关键词。 TF(Term Frequency)词频 IDF(Inverse Document Frequency)逆文档频率 IDF大小与一个词的常见程度成反比 TF-IDF的计算 ...原创 2020-07-16 22:33:04 · 418 阅读 · 0 评论 -
CCIPCA
https://blog.csdn.net/sinat_31425585/article/details/81748360 下面这篇总结的很好 https://blog.csdn.net/u013468614/article/details/103273933原创 2019-12-09 19:00:52 · 507 阅读 · 0 评论 -
ICA
ICA算法: https://www.cnblogs.com/jerrylead/archive/2011/04/19/2021071.html https://blog.csdn.net/ctyqy2015301200079/article/details/86705869#font_face_3__font_37 https://blog.csdn.net/sinat_36219858/...原创 2019-11-21 20:09:22 · 230 阅读 · 0 评论 -
SVM和SVR
SVM(支持向量机)(Support Vector Machines) 解决问题:分类 回归 SVM分类问题目标:寻找区分两类的超平面(hyper plane),使边际(margin)最大 推导 转化为凸优化问题 5凸优化问题 #广义拉格朗日乘子法 #Karush-Kuhn-Tucker最优化条件(KKT条件) 拉格朗日乘子法的一种推广,可以处理有不...原创 2019-06-22 17:52:00 · 2733 阅读 · 0 评论 -
主成分分析(PCA)
4主成分分析PCA(Principal Component Analysis)-降维算法 #例子:有多个特征值 #通过PCA后 #降维分析 找到数据最重要的方向(方差最大的方向) #第一个主成分就是从数据差异性最大(方差最大)的方向提取出来的,第二个主成分则来自于数据差异性次大的方向,并且要与第一个主成分方向正交 #线性回归和PCA的区别 PCA算法步骤: ...原创 2019-06-22 11:33:35 · 338 阅读 · 0 评论 -
聚类算法
20190619 1聚类算法 #分类和聚类区别 分类是有标签的,聚类是没有的 2K-MEANS #算法接受参数k,然后将实现输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;不同聚类中的对象相似度较小。 例:k=3 就将对象聚类成三个类别 #算法设计思想:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代地方法,逐次更新各聚类中心的值,...原创 2019-09-29 19:33:50 · 1344 阅读 · 0 评论 -
线性回归和逻辑回归
20190609 1一元线性回归:一个自变量一个因变量 #两个变量的关系用一条直线来模拟 #如果包含两个以上的自变量,则称为多元回归分析 2最小二乘法,就是代价函数的定义 3相关系数:衡量线性相关性的强弱(越接近1越接近线性关系) 4决定系数 注:y(带一个小帽子的是)预测值 5梯度下降法(利用求到的梯度不断改变两个参数的值) #首先初始化θ0,θ1 #不断改变θ0,θ...原创 2019-06-11 22:37:57 · 534 阅读 · 0 评论 -
机器学习之贝叶斯算法(贝叶斯公式、词袋模型、TF-IDF算法)总结
6贝叶斯算法(分类) 已知:P(X|H),求P(H|X) #通过抽样来获得先验概率 #贝叶斯例子 #如果有多个特征的情况下会使得统计量巨大,n个特征,需要计算2n-1次 #解决办法:朴素贝叶斯(假设:特征X1,X2,X3……之间都是相互独立的) #贝叶斯模型 #多项式模型 #伯努利模型 #混合模型 #高斯模型 ...原创 2019-06-16 18:32:39 · 1549 阅读 · 0 评论 -
机器学习之集成学习(Boosting算法、Bagging算法、Stacking算法)总结
20190616 1集成学习 集成学习就是组合多个学习器,最后可以得到一个更好的学习器 #集成学习算法 #装袋(bagging):个体学习器之间不存在强依赖关系 #随机森林(Random Forest) #提升(boosting):个体学习器之间存在强依赖关系 #Stacking 2bagging 是一种有放回抽样 ...原创 2019-06-16 18:30:22 · 2224 阅读 · 1 评论 -
机器学习之决策树总结
3决策树 决策树比较适合分析离散数据,如果是连续数据要先转成离散数据再做分析 ID3算法,C4.5,CART算法 4信息熵(用于度量不确定性) 5连续变量处理 对变量进行切分 6C4.5算法 7CART算法 #例子:分别计算他们的Gini系数增益,取Gini系数增益值最大的属性作为决策树的根节点属性。 #根节点的Gini系数: #根据是否有房进行划分...原创 2019-06-15 17:18:18 · 381 阅读 · 0 评论 -
机器学习之KNN(K-nearest neighbors)
20190615 1KNN(分类)K近邻算法 (K一般取单数) #选取所有已知类别的实例作为参照选择参数K #计算位置实例与所有已知实例的距离 #选择最近K个已知实例 #根据少数服从多数的投票法则,让位置实例归类为K个最邻近样本中最多数的类别 2算法缺点 3 kd-tree ...原创 2019-06-15 09:59:30 · 248 阅读 · 0 评论 -
感知机与神经网络初探
20190612 1感知机 以下是为了运算方便 2感知机学习规则 #感知机学习规则例子 #感知机收敛条件 误差小于某个预先设定的较小的值 两次迭代之间的权值变化已经很小 设定最大迭代次数,当迭代超过最大次数就停止 3线性神经网络 线性神经网络在结构上与感知器非常相似,只是激活函数不同 在模型训练时把原来的sign函数改成了purelin函数:y=x 4BP神...原创 2019-06-12 22:21:36 · 785 阅读 · 0 评论