python matplotlib.pyplot.plot

本文详细介绍了Matplotlib库中plot()方法的使用方法,包括如何绘制不同样式的线条和标记,如何添加图例,以及如何调整图表样式等。通过丰富的示例展示了如何利用颜色、线型和标记来定制图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matplotlib.pyplot.plot

matplotlib.pyplot 下分有 plot(),pie() 等很很很多种作图方法。
本文将介绍较为常用的 plot 方法。


plot

定义

在坐标轴上(Axes),二维画(Plot)线(line)和/或标记(markers)。参数是变长参数,其可以是 多组(x,y)对 以及可以选参数 显示格式字符串 等 。

Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple x, y pairs with an optional format string.

函数
matplotlib.pyplot.plot(*args, **kwargs)

通用用法

通用用法
plot(x, y)        # plot (x, y), style = 默认
                  #               color = 默认
带style的画法
plot(x, y, 'bo')  # plot (x, y), style = 圆形标记(circle)
                  #               color = 蓝色(blue)
省略 x 轴
plot(y)           # plot (x, y)   x 默认使用索引 0 到 N-1

plot(y, 'r+')     # 同上(ditto),  style = 加号标记(circle)
                  #               color = 红色(red)
分别 plot
plot(x1, y1, 'g^', x2, y2, 'g-')

等同于

plot(x1, y1, 'g^')
plot(x2, y2, 'g-')
画图例 legend
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs',  label='line 2')
axis([0, 4, 0, 10])
legend()
抗锯齿 antialiased
plot(x1, y1, x2, y2, antialiased=False)
显示格式的另外写法
plot(x, y, color='green', linestyle='dashed', marker='o',
 markerfacecolor='blue', markersize=12).

显示格式 format

颜色 color风格 sytle(线 line + 标记 marker) 的组合。

如,

plot(x, y, 'r-*')   # r为颜色, -为线,*为标记

颜色 color

charactercolor颜色
‘b’blue
‘g’green绿
‘r’red
‘c’cyan青绿
‘m’magenta紫红
‘y’yellow
‘k’black
‘w’white

白色因为白底看不出来。。。

线 line

characterdescription描述
‘-‘solid实线
‘–’dashed破折线
‘-.’dash-dot破折点线
‘:’dotted点线

标记 markers

characterdescription描述
‘.’point圆点
‘,’pixel像素点
‘o’circle大圆点
‘v’triangle_down↓ 实心三角
‘^’triangle_up↑ 实心三角
‘<’triangle_left← 实心三角
‘>’triangle_right→ 实心三角
‘1’tri_down↓ 梅花三角
‘2’tri_up↑ 梅花三角
‘3’tri_left← 梅花三角
‘4’tri_right→ 梅花三角
’s’square方块
‘p’pentagon实心五角
‘*’star五角星形
‘h’hexagon1实心六角00°
‘H’hexagon2实心六角60°
‘+’plus‘+’ 形
‘x’x‘X’ 形
‘D’diamond实心菱形
‘d’thin_diamond实心瘦菱形
md语法冲突vline竖线形
‘_’hline marker下划线形

参考

https://matplotlib.org/api/pyplot_api.html

### matplotlib.pyplot.plot 函数的使用方法 `matplotlib.pyplot.plot()` 是 Matplotlib 库中最常用的绘图函数之一,用于绘制线条图和其他形式的图表。它可以根据输入的数据自动生成图形,并支持多种样式选项来自定义外观[^2]。 #### 基本语法 ```python matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs) ``` - `*args`: 输入数据,通常为 `(x, y)` 形式的坐标点集合。 - `scalex`, `scaley`: 是否自动缩放轴的比例,默认为 True。 - `data`: 可选参数,允许传递 Pandas DataFrame 或其他数据容器。 - `**kwargs`: 关键字参数,用于设置线条的颜色、宽度、标记等属性。 --- #### 示例代码 ##### 示例 1:简单的折线图 以下示例展示了如何使用 `plot` 绘制一条基本的折线图。 ```python import matplotlib.pyplot as plt # 数据准备 x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] # 使用 plot 函数绘制折线图 plt.plot(x, y) # 显示图像 plt.show() ``` 此代码会生成一个简单的折线图,其中横坐标为 `x`,纵坐标为 `y`。 --- ##### 示例 2:带样式的折线图 可以通过关键字参数进一步定制线条的样式,例如颜色 (`color`) 和线宽 (`linewidth`)。 ```python import numpy as np import matplotlib.pyplot as plt # 数据准备 x = np.linspace(0, 6, 100) # 自动生成 100 个均匀分布的点 y = np.cos(2 * np.pi * x) * np.exp(-x) + 0.8 # 使用 plot 函数绘制带有样式的折线图 plt.plot( x, y, color='red', # 设置线条颜色为红色 linewidth=3, # 设置线条宽度为 3 linestyle='-' # 设置线条风格为实线 ) # 显示图像 plt.show() ``` 这段代码不仅绘制了曲线,还设置了线条的颜色、宽度以及风格[^1]。 --- ##### 示例 3:多个系列的对比图 可以在同一张图中绘制多条折线以便比较不同数据集之间的关系。 ```python import matplotlib.pyplot as plt # 数据准备 x = [1, 2, 3, 4, 5] y1 = [2, 4, 6, 8, 10] y2 = [1, 3, 5, 7, 9] # 同一 figure 下绘制两条折线 plt.plot(x, y1, label="Series 1", color="blue") # 添加标签和颜色 plt.plot(x, y2, label="Series 2", color="green") # 添加图例 plt.legend() # 显示图像 plt.show() ``` 这里通过 `label` 参数为每条折线添加了描述性的名称,并调用了 `legend()` 方法显示图例[^3]。 --- ##### 示例 4:散点图与连线组合 如果希望既展示离散点又连接这些点,则可以结合 `marker` 参数实现。 ```python import numpy as np import matplotlib.pyplot as plt # 数据准备 x = np.linspace(0, 10, 50) y = np.sin(x) # 绘制既有标记又有连线的图 plt.plot( x, y, marker='o', # 圆形标记 markersize=5, # 标记大小 linestyle='-.' # 点划线风格 ) # 显示图像 plt.show() ``` 以上代码会在每个数据点处放置圆形标记的同时保留连贯的线条效果[^3]。 --- ### 注意事项 - 当未显式提供 `x` 值时,`plot(y)` 将默认把索引位置作为横坐标值。 - 配置过多复杂选项可能会影响性能;对于大规模数据可视化建议优化渲染策略或改用 Seaborn/SVG 渲染工具替代[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值