LeetCode刷题记录----437.路径总和Ⅲ(medium)

2025/8/13

题目(medium):


我的思路:

很容易的可以想到的是把这颗树中所有的路径都求一次路径和,然后来判断有几条路径是满足题目的要求的。因此我们要考虑如何对所有的路径进行遍历。

首先路径肯定是由起点和终点组成的,那所有的路径肯定是所有的节点都会成为起点,而该节点作为根节点的子树中的节点也都会作为该节点的终点。

因此通过以上的分析我们可以知道:

①对每一个节点都要进行一次它作为根节点的子树遍历

②且这个子树遍历到的位置都是作为这个路径的终点

那还剩一个需要考虑的就是如何判断该路径的合法性:

①只要给每个作为终点遍历到的节点位置传入它这个节点需要的目标值即可(比如根节点是10,而目标值是8,现在遍历到了它的左孩子位置,我们自然希望左孩子的值是8-10 = -2,其他的节点以此类推)

综上可以知道算法步骤如下:

①传入树的根节点作为起点,并深度优先搜索来遍历它的所有子节点作为终点

②对于每个子节点判断他的值是否等于(根节点值-目标值),若等于则答案值+1

③在对树的根节点这样检索完毕之后,再把它的左右子树按步骤一二继续进行检索判断

具体代码如下:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
      #深搜遍历每一种可能

      #该函数用于求以当前根节点作为路径起始点的时候得到的目标路径的数量
      def rootSum(root:Optional[TreeNode], targetSum:int) -> int:
          if root is None:
            return 0

          #先判断根节点自己满不满足目标值
          res = 0
          if root.val == targetSum:
            res += 1

          #然后判断根节点的左右子树中满足的个数
          res += rootSum(root.left, targetSum - root.val)
          res += rootSum(root.right, targetSum - root.val)

          return res
      
      if root is None:
        return 0

      res = rootSum(root, targetSum)  #以根节点作为起始节点满足的路径数
      res += self.pathSum(root.left, targetSum)   #求左子树中满足的路径数
      res += self.pathSum(root.right, targetSum)  #求右子树中满足的路径数

      return res

时间复杂度:O(N^{2})【对于每个节点都要作为起点去检索一次它作为根节点的子树】

空间复杂度:O(N)


优化思路:

显然,时间复杂度这么高的原因在于其中存在着很多重复的计算。从上面的方法我们也可以感觉到,它似乎和N数之和这种题目有些相似。而N数之和我们是可以用前缀和的方式来解决,对于这个题目当然也是可以的。这里的前缀和我们定义为:从树的根节点到该节点的值的和

即我们如何快速判断当前节点作为终点的时候,有没有适配的节点作为起点和它组成路径呢?

以该图为例子,蓝色的字表示节点的值,黄色的字表示从根节点到这个节点的路径的路径和。我们可以知道4→2→2这条路径的路径和是8,那如果我想要知道2→2这条路径的路径和该怎么求呢?那直接通过8-4 = 4 即可求得。此时我们的得知一个节点的前缀和 - 另一个节点的前缀和 = 路径和

那我们要判断是否存在有效路径只要通过终点节点的前缀和 - 起点节点的父节点的前缀和 ?= targetNum即可。假设targetNum == 4 , 则我们直接通过逆向思维可以知道 终点节点的前缀和 - targetNum == 起点节点的父节点的前缀和。这里正好 8(终点前缀和) - 4(目标值) == 4,而正好又存在一个前缀和为4的节点(图中为根节点),因此这里存在一条路径和为4的路径。

 

因此我们会进行如下的操作:

①声明一个哈希表(没有值的键对应的值为0),用于记录某个路径和的值有几条路径对应

②传入当前节点位置的路径和,然后让路径和的值加上当前节点的值求得当前节点的前缀和

③用当前节点的前缀和 - 目标值得到的值去哈希表中搜素这个前缀和的节点有几个,并加在结果值上

④把哈希表以当前节点的前缀和作为键的值+1

⑤递归计算左右子树中的有效路径数并+在结果值上

⑥然后把哈希表以当前节点的前缀和作为键的值-1【因为此时说明当前节点作为根节点的树的所有前缀和都已经应用完毕,移除出去避免影响其他树的路径和计算】

具体代码如下:

class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
        prefix = collections.defaultdict(int)
        prefix[0] = 1

        def dfs(root, curr):
          if root is None:
            return 0
          
          #计算到该节点为终点的路径的前缀和
          curr += root.val
          res = 0
          res += prefix[curr - targetSum] #判断是否有满足条件的起始节点的前缀和

          #更新当前节点作为起始节点的前缀和
          prefix[curr] += 1

          #然后再得到左右子树的有效路径数
          res += dfs(root.left, curr)
          res += dfs(root.right, curr)

          #到这里说明这个根节点作为起点进行有效路径检索的前缀和已经结束
          #需要把他移除出去避免影响另一边子树的路径判断
          prefix[curr] -= 1

          return res

        return dfs(root, 0)

时间复杂度:O(N)

空间复杂度:O(N)


总结:

①对求所有的东西中哪些东西是合法的这种问题可以考虑暴力地把每一个东西都具体求出来并判断

②对于有关N个数相乘或者相加的问题的合法性判断,可以考虑使用前缀和和哈希表配合来对暴力算法进行优化

### LeetCode 题基础语法入门教程 LeetCode 是程序员提升算法能力的重要平台之一,掌握其基础语法对于高效解题至关重要。以下是关于 C++ 和 Java 的基础语法要点以及如何应用这些知识来解决 LeetCode 上的问题。 #### 1. 数据类型与变量 C++ 提供了多种基本数据类型,包括但不限于 `int`、`long` 和 `double` 等[^2]。在编写程序时,应根据具体需求选择合适的数据类型以优化内存使用和计算效率。例如,在处理大规模数值运算时,推荐优先考虑浮点数或长整型以避免溢出问题。 #### 2. 控制流语句 控制流是编程的核心部分,它决定了代码执行路径的选择逻辑。常用的条件分支结构如 `if...else` 或者更复杂的多路判断工具——`switch case` 可帮助开发者根据不同输入情况采取相应操作。此外还有循环机制(for/while),它们允许重复执行某段特定指令直到满足终止条件为止。 #### 3. 容器类简介及其应用场景分析 为了更好地管理和存储大量动态变化的信息单元组群对象集合体概念模型抽象表示形式即我们常说的各种标准模板库(STL)组件实例化后的实体形态表现出来的东西叫做容器(Container),其中最常用的一些包括: - **Vector**: 动态数组,支持随机访问并能在尾部快速增删元素。 - **Set & Unordered_Set**: 分别代表有序集合并具备查找功能的哈希表版本;前者按升序排列后者则不关心顺序只关注唯一性检验速度更快些时候会用到find()方法来进行成员存在性的检测工作流程简化很多哦~ - **Map & Multimap**: 键值映射关系管理利器,能够轻松实现一对一或多对一关联查询任务目标达成效果显著提高工作效率的同时也减少了错误发生的可能性几率大大降低啦!另外还有一种叫Unorderd_Map变种形式同样适用于某些特殊场合条件下呢😊 #### 4. 特殊用途的数据结构介绍 - Deque (双端队列) Deque是一种可以在两端都进行插入删除操作非常灵活方便的一种线性序列结构形式表达方式呈现出来的样子感觉特别棒👍🏻通过下面这个例子我们可以看到它是怎么被创建出来的:`Deque<Integer> deque = new LinkedList<>();` 这样我们就得到了一个基于链接列表实现原理构建而成的新对象实例可供后续进一步开发拓展之用了呀😄[^3] #### 5. 关于栈(Stacks)的知识补充说明 最后值得一提的是有关Stack方面的内容知识点分享给大家知道一下吧~原来啊,在Standard Template Library里面啊,我们的老朋友Stack其实背后隐藏着秘密武器呢🧐那就是它可以由三种不同的底层支撑技术方案任选其中之一作为实际运行环境下的物理载体介质哟😎分别是向量(Vector),双向队列(Deque)或者是简单的单链表(List)...怎么样是不是很神奇呢😉[^4] ```java // 示例:Java 中 Stack 的简单使用 import java.util.Stack; public class Main { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); // 添加元素 stack.push(10); stack.push(20); System.out.println("Top element is: " + stack.peek()); // 输出顶部元素 // 删除顶部元素 stack.pop(); System.out.println("After popping, top element is: " + stack.peek()); } } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萘柰奈

谢谢老板喵

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值