
Federated Learning
文章平均质量分 90
联邦学习
所谓远行Misnearch
心中栽桃树,灼灼映桃花
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
FedAvg论文
论文:Communication-Efficient Learning of Deep Networks通过阅读帖子进行的了解。联邦平均算法就是最典型的平均算法之一。将每个客户端上的本地随机梯度下降和执行模型的平均服务器结合在一起。原创 2024-06-10 20:59:49 · 953 阅读 · 0 评论 -
Federated graph machine learning: A survey of concepts, techniques, and applications
联邦图机器学习(FGML)是一个很有前途的解决方案,通过以联邦方式训练图机器学习模型来解决这一挑战。因此该篇综述就对FGML相关文献进行了回顾。提出分类为两类:FL with structured data(具有结构化数据的联邦学习)structured FL(结构化联邦学习)原创 2024-06-09 15:12:24 · 870 阅读 · 0 评论 -
联邦学习(一)
联邦学习(Federated Learning)是一种分布式机器学习方法,旨在在保护数据隐私的前提下进行模型训练。传统的机器学习方法通常需要将所有数据集中在一个服务器上进行训练,这样可能会带来数据隐私和安全问题。而联邦学习通过在多个分散的数据源(如用户的移动设备)上进行模型训练,避免了将数据集中到一个中央服务器的需求,从而保护了数据隐私。原创 2024-05-26 15:59:34 · 838 阅读 · 0 评论