(有限维向量空间) 思考概念和法则作用II

本文探讨了向量空间的基本概念,包括向量的张成、向量组的线性无关性和相关性,以及基的概念。通过具体例子说明了如何由向量构成不同维度的向量空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 张成

“向量空间”的“和”与“直和”法则描述了“子空间”组成更高维空间的一种过程。为描述“向量(组)”组成“向量空间”的某种过程,就定义了“张成”。“张成”的定义是“向量(组)”的所有线性组合,给一个“向量(组)”对它进行“张成”后就能够得到一个“向量空间”。如向量a = {1, 1, 1}的“张成”的“向量空间”用几何描述就是过原点和(1, 1, 1)的直线,它是3维“向量空间”的“子空间”。只有较为特殊的“向量(组)”的张成才能组成与向量维数相同的“向量空间”,如b = {1, 0, 0},c = {0, 1, 0},d = {0, 0, 1}三个向量的“张成”组成“三维向量空间”。[2014.6.13-9:55]


简单的理解向量“张成”向量空间的过程。两个n(n > 1,整数)维向量a = {a1, …, an },b= {b1, …, bn}选其中的一个、两个向量在一定条件下可“张成”为一、二维向量空间。


(1) 向量的张成 ---- 一维向量空间(直线)

一维向量空间由单个向量张成。当a向量中只有一个坐标ai(1 <= i<= n)不为0时,几何上,a的“张成”为ai所代表的坐标轴;当a向量中只有ai和aj(1 <= i < j <= n)两个坐标不为0时,几何上,a的“张成”在ai和aj坐标所在轴构成的平面上,且未经过原点和(ai, aj)点的直线……


(2) 向量的张成 ---- 二维向量空间(平面)

二维向量空间由两个向量张成。只要ab向量不为0向量且两个向量不成标量比(成标量比时张成直线)。ab向量组就可以“张成”为平面。此时,单独的ab可“张成”为直线。几何上,ab向量组的“张成”为ab“张成”的直线所组成的平面(两直线相交于原点)。


(3) 继续看书的理由

n维向量空间至少需n个n维的向量来“张成”。3个3维向量要“张成”三维向量空间的条件似不仅只是“三个向量不成标量比”一个条件。我觉得自己有可能推不出来“n维向量张成n维向量空间的条件”,所以还是继续往下看书。[2014.6.13-11:50]


2. 向量组的线性无关

假设v1, …, vn为n维向量空间的一个向量组,(n为正整数)。


(1) 向量组的线性无关性

假设向量组v1, …, vn线性无关,则其中任意m个向量的“张成”都能够组成m维向量空间。(1<= m <= n,m取正整数),即m维向量空间内的每一个向量都可以由这m个向量唯一的表示。[2014.6.14-11:58]


(2) 向量组的线性相关性

假设向量组v1, …, vn线性相关,则存在某些系数使这n个向量的“张成”组成不了n维向量空间。根源在于那些线性相关的向量(假设有m个向量)在这些系数下作和后跟m个向量中的某一个向量在一条线上,在这些系数的条件下,所有向量的和为(n – m + 1)维向量空间内的向量。而在线性无关的条件下,任何系数下的向量和都是n维向量空间中的向量。[2014.6.14-12:05]


线性相关性引理对象vj

在向量组线性相关时a1v1 + … + amvm =0,vj前的系数不能必须为0,即vj是造成线性相关性的一个向量。所有不构成向量相关的向量系数为0,vj与构成向量相关的其它向量和(特性系数)必须成标量比。只有这样的vj才符合线性相关性的引理。[2014.6.16-9:50]


(3) 基

基的概念基于张成和线性无关。n个具有n个坐标的“线性无关”的“向量组”称为“n维向量空间”的。[2014.6.16-10:11]


3. 总结

此章节介绍了描述有限维数下的“由向量构成向量空间”的法则。在“向量组线性无关”的条件下,碰巧的是:“n个具有n个坐标的“向量组”能够组成‘n维向量空间’”,故而就能够用线性无关的向量组来描述对应维数的向量空间。[10:23]


Math Note Over.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值