题目描述
给你一个下标从 0 开始长度为 n 的整数数组 nums 。
如果以下描述为真,那么 nums 在下标 i 处有一个 合法的分割 :
前 i + 1 个元素的和 大于等于 剩下的 n - i - 1 个元素的和。
下标 i 的右边 至少有一个 元素,也就是说下标 i 满足 0 <= i < n - 1 。
请你返回 nums 中的 合法分割 方案数。
示例1:
输入:nums = [10,4,-8,7]
输出:2
解释:
总共有 3 种不同的方案可以将 nums 分割成两个非空的部分:
- 在下标 0 处分割 nums 。那么第一部分为 [10] ,和为 10 。第二部分为 [4,-8,7] ,和为 3 。因为 10 >= 3 ,所以 i = 0 是一个合法的分割。
- 在下标 1 处分割 nums 。那么第一部分为 [10,4] ,和为 14 。第二部分为 [-8,7] ,和为 -1 。因为 14 >= -1 ,所以 i = 1 是一个合法的分割。
- 在下标 2 处分割 nums 。那么第一部分为 [10,4,-8] ,和为 6 。第二部分为 [7] ,和为 7 。因为 6 < 7 ,所以 i = 2 不是一个合法的分割。
所以 nums 中总共合法分割方案受为 2 。
示例2:
输入:nums = [2,3,1,0]
输出:2
解释:
总共有 2 种 nums 的合法分割:
- 在下标 1 处分割 nums 。那么第一部分为 [2,3] ,和为 5 。第二部分为 [1,0] ,和为 1 。因为 5 >= 1 ,所以 i = 1 是一个合法的分割。
- 在下标 2 处分割 nums 。那么第一部分为 [2,3,1] ,和为 6 。第二部分为 [0] ,和为 0 。因为 6 >= 0 ,所以 i = 2 是一个合法的分割。
提示:
2 <= nums.length <= 105
-105 <= nums[i] <= 105
思路
利用暴力会超时,利用一个dp数组存储其前面元素之和,dp[i]表示前i+1个元素之和。然后遍历数组进行判断前面的元素总是否大于等于与后面的元素总和,是的话答案+1。
int waysToSplitArray(vector<int>& nums) {
long long int ans=0;
vector<long long int> dp;
long long int sum=0;
for(auto x:nums){
sum+=x;
dp.push_back(sum);//存储前n个元素的和
}
for(long long int i=0;i<nums.size()-1;i++){
if(dp[i]>=sum-dp[i])//比较
ans++;
}
return ans;
}