洛谷-4071 [SDOI2016]排列计数

本文介绍了一种求解特定长度且有固定稳定点数量的序列数目的算法,使用组合数学中的错排公式和逆元法,通过预计算阶乘、逆元和错排数,实现了快速求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 109+710^9+7109+7 取模。
输入格式
第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
输出格式
输出 T 行,每行一个数,表示求出的序列数

输入输出样例
输入
5
1 0
1 1
5 2
100 50
10000 5000

输出
0
1
20
578028887
60695423

说明/提示
T=500000 ,n≤1000000 ,m≤1000000 。

解释:答案=Cnm∗D(n−m)C_{n}^m*D(n-m)CnmD(nm)其中DDD为错排公式,D(n)=(n−1)∗(D(n−1)+D(n−2))D(n)=(n-1)*(D(n-1)+D(n-2))D(n)=(n1)(D(n1)+D(n2))再利用逆元就OK

#include<iostream>
#define mod 1000000007
#define N 1000003
using namespace std;
int T=0;
int n=0,m=0;
long long D[N]={1,0,1};
long long fact[N]={1};
long long inv[N]={0,1};
long long pow(long long a,long long b){
    long long ret=1;
    while(b){
        if(b&1) ret=ret*a%mod;
        a=a*a%mod;b>>=1;
    }
    return ret;
}
int main(){
    ios::sync_with_stdio(false);
    for(int i=1;i<N;i++) fact[i]=fact[i-1]*i%mod;
    for(int i=3;i<N;i++) D[i]=(i-1)*((D[i-1]+D[i-2])%mod)%mod;
    for(int i=0;i<N;i++) inv[i]=pow(fact[i],mod-2);
    cin>>T;
    while(T--){
        cin>>n>>m;
        long long ret1=fact[n]*D[n-m]%mod;
        long long ret2=inv[m]*inv[n-m]%mod;
        cout<<ret1*ret2%mod<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值