TSC - GCN:基于图卷积神经网络的高效人脸聚类方法
在人脸聚类领域,传统的监督式人脸聚类方法虽然被证明具有一定的有效性,但存在计算开销大的问题。为了解决这一问题,一种名为TSC - GCN(Two - Stage Clustering Method Based on Graph Convolutional Neural Network)的方法被提出,它在提高计算效率的同时,还能保证较好的聚类精度。
1. 现有方法概述
在人脸聚类方面,已经有多种方法被提出:
- Conditional Pairwise Clustering :将聚类问题定义为条件随机场,并利用人脸之间的成对相似度来完成聚类。
- 球簇学习(Ball Cluster Learning) :将特征空间划分为等半径的球,每个球代表一个簇,同时对球之间的关系进行约束。
- 基于链接预测的图卷积人脸聚类算法 :使用GCN捕获人脸数据的局部上下文,准确判断人脸对的链接可能性。
- 双GCN模块设计 :分别用于检测高质量的簇提议并消除其中的噪声,以获得高质量的聚类结果。
然而,这些监督式人脸聚类方法都需要生成大量子图进行连通性学习,导致计算开销较大。而TSC - GCN方法通过按密度划分人脸数据,仅预测低密度部分的连通性,高密度部分自然连通,从而在保证精度的同时加快了运算速度。
2. TSC - GCN方法详解
2.1 问题描述
随着神经网络的发展,特征提取能够提取