33、基于车辆价值的网约车订单匹配与调度算法

基于车辆价值的网约车订单匹配与调度算法

1. 引言

随着网约车业务的快速发展,各类在线网约车平台不断涌现,像滴滴和优步等。滴滴每年运送的乘客数量已超 100 亿人次,预计到 2030 年,全球在线网约车业务的市场价值将增长至 2850 亿美元。在这个业务中,网约车平台需要高效地将乘车订单与车辆匹配,并调度闲置车辆,以此提升利润。

平台应将车辆与订单匹配,同时把闲置车辆调度到潜在高需求区域,避免周期性地随机探索潜在乘车订单。而且,平台需最大化长期社会福利(即所有轮次社会福利之和),而非某一轮的社会福利。不过,当前的匹配和调度决策可能会影响未来的车辆分布,进而影响未来的匹配和调度,最终影响整体社会福利。

为解决这些问题,我们设计了车辆价值函数,以表征车辆在时空状态下能提供的未来价值,再用该函数设计订单匹配和闲置车辆调度算法,使算法能考虑当前决策对未来轮次的影响,从而提高长期社会福利。

2. 相关工作

在网约车领域,已有很多关于订单匹配和闲置车辆调度的研究:
- 订单匹配
- 为实现利润最大化,Cheng 等人提出基于排队论的订单匹配框架,结合需求预测和预测的闲置时间段,最大化平台每一轮的预期利润。
- 为提高订单服务率,Garaix 等人提出迭代算法来解决订单匹配问题。
- 为减少车辆行驶距离,Cao 等人提出基于空间剪枝技术的大规模多对多匹配算法。
- 闲置车辆调度
- Holler 等人提出基于深度强化学习的方法,解决订单匹配和闲置车辆调度问题,最大化所有车辆的利润。
- Haliem

内容概要:本文主要探讨了交通网络中的乘客需求、车辆供给、司机决策以及网络均衡的建模方法。首先,通过数学公式详细描述了乘客从一个区域到另一个区域的出行需求,考虑了外部出行成本、网约车成本、等待时间等影响因素。其次,分析了司机选择加入网约车平台的概率及其收入模型,指出司机的平均时薪由乘客需求、乘车价格和平台佣金率共同决定。接着,讨论了司机在完成服务后的决策行为,包括选择前往哪个区域继续服务或前往充电站充电,并给出了相应的预期效用公式。最后,建立了网络均衡模型,确保各区域的乘客需求车辆供给相匹配,并提出了联合空间定价优化模型以实现平台利润最大化,采用拉格朗日对偶分解法求解该优化问题。 适合人群:对交通网络建模、网约车平台运营管理感兴趣的科研人员、高校教师及研究生。 使用场景及目标:①用于研究交通网络中乘客需求预测和车辆调度优化;②帮助网约车平台制定合理的定价策略和车辆分配方案,提高运营效率和服务质量;③为政府相关部门提供政策支持依据,促进城市交通系统的可持续发展。 其他说明:本文不仅提供了详细的数学模型推导过程,还介绍了具体的求解算法,具有较强的理论深度和实际应用价值。读者应具备一定的数学基础,特别是熟悉微积分、线性代数和最优化理论等相关知识。
1. 用户身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录食物数据库模块 食物数据库: 基础信息:包含常见食物(如米饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),一键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
1. 用户管理模块 用户注册认证: 注册:用户填写身份信息(姓名、身份证号、手机号)、设置登录密码(需符合复杂度要求),系统生成唯一客户号 登录:支持账号(客户号 / 手机号)+ 密码登录,提供验证码登录、忘记密码(通过手机验证码重置)功能 身份验证:注册后需完成实名认证(模拟上传身份证照片,系统标记认证状态) 个人信息管理: 基本信息:查看 / 修改联系地址、紧急联系人、邮箱等非核心信息(身份证号等关键信息不可修改) 安全设置:修改登录密码、设置交易密码(用于转账等敏感操作)、开启 / 关闭登录提醒 权限控制:普通用户仅能操作本人账户;管理员可管理用户信息、查看系统统计数据 2. 账户资金管理模块 账户管理: 账户创建:用户可开通储蓄卡账户(默认 1 个主账户,支持最多 3 个子账户,如 “日常消费账户”“储蓄账户”) 账户查询:查看各账户余额、开户日期、状态(正常 / 冻结)、交易限额 账户操作:挂失 / 解挂账户、申请注销账户(需余额为 0) 资金操作: 转账汇款:支持同行转账(输入对方账户号 / 手机号),需验证交易密码,可添加常用收款人 存款 / 取款:模拟存款(输入金额增加余额)、取款(输入金额减少余额,需不超过可用余额) 交易记录:按时间、类型(转入 / 转出 / 存款 / 取款)查询明细,显示交易时间、金额、对方账户(脱敏显示)、交易状态 3. 账单支付模块 账单管理: 月度账单:自动生成每月收支明细,统计总收入、总支出、余额变动 账单查询:按月份、交易类型筛选账单,支持导出为 Excel 格式 还款提醒:若有贷款(简化版可模拟),系统在还款日 3 天前发送提醒 快捷支付: 绑定支付方式:添加银行卡(系统内账户)作为支付渠道 模拟消费:支持输入商户名称和金额,完成支付(从账户余额扣减) 支付记录:保存所有消费记录,包含商户、时间、金额、支付状态 4.
关于网约车调度算法的实验代码示例通常涉及到遗传算法、模拟退火算法或贪心策略等优化方法。这里以简单的遗传算法为例,这是一个简化的Python版本,用于解决司机和乘客匹配的问题: ```python import random # 定义司机和乘客类 class RideshareDriver: def __init__(self, id, location): self.id = id self.location = location class Passenger: def __init__(self, id, pickup_location, destination): self.id = id self.pickup_location = pickup_location self.destination = destination # 遗传算法核心部分 def genetic_algorithm(cars, passengers, max_gen=100): # 初始化种群(司机集合) population = [RideScheduler(car) for car in cars] for _ in range(max_gen): # 选择操作:从种群中随机选择一部分个体 selected = random.sample(population, len(population) // 2) # 交叉操作:两个个体交换部分解决方案 offspring = [selected[i].mate(selected[j]) for i in range(0, len(selected), 2) for j in range(i+1, len(selected))] # 变异操作:对一些后代进行微小修改 mutated_offspring = [child.mutate() for child in offspring] # 更新种群 population.extend(mutated_offspring) # 计算适应度:如总行程时间最短 fitness_scores = [schedule_fitness(child.schedule) for child in population] best_solution = population[fitness_scores.index(max(fitness_scores))] return best_solution.schedule # 假设schedule_fitness是一个函数,计算司机路径优化后的总体行程时间 def schedule_fitness(schedule): total_distance = sum([driver.distance_to_passenger(passenger) for driver, passenger in schedule]) return total_distance ``` 这个例子中,`RideScheduler`类负责存储司机的路径信息并包含基本的操作方法(比如`mate`和`mutate`),`distance_to_passenger`则表示计算司机到乘客之间的距离。 注意这只是一个简化版,实际应用中的网约车调度可能会更复杂,需要考虑实时数据更新、动态需求预测等因素,并可能使用更复杂的搜索算法或机器学习模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值