基于车辆价值的网约车订单匹配与调度算法
1. 引言
随着网约车业务的快速发展,各类在线网约车平台不断涌现,像滴滴和优步等。滴滴每年运送的乘客数量已超 100 亿人次,预计到 2030 年,全球在线网约车业务的市场价值将增长至 2850 亿美元。在这个业务中,网约车平台需要高效地将乘车订单与车辆匹配,并调度闲置车辆,以此提升利润。
平台应将车辆与订单匹配,同时把闲置车辆调度到潜在高需求区域,避免周期性地随机探索潜在乘车订单。而且,平台需最大化长期社会福利(即所有轮次社会福利之和),而非某一轮的社会福利。不过,当前的匹配和调度决策可能会影响未来的车辆分布,进而影响未来的匹配和调度,最终影响整体社会福利。
为解决这些问题,我们设计了车辆价值函数,以表征车辆在时空状态下能提供的未来价值,再用该函数设计订单匹配和闲置车辆调度算法,使算法能考虑当前决策对未来轮次的影响,从而提高长期社会福利。
2. 相关工作
在网约车领域,已有很多关于订单匹配和闲置车辆调度的研究:
- 订单匹配 :
- 为实现利润最大化,Cheng 等人提出基于排队论的订单匹配框架,结合需求预测和预测的闲置时间段,最大化平台每一轮的预期利润。
- 为提高订单服务率,Garaix 等人提出迭代算法来解决订单匹配问题。
- 为减少车辆行驶距离,Cao 等人提出基于空间剪枝技术的大规模多对多匹配算法。
- 闲置车辆调度 :
- Holler 等人提出基于深度强化学习的方法,解决订单匹配和闲置车辆调度问题,最大化所有车辆的利润。
- Haliem