ConcurrentHashMap1.7学习

本文详细解析了ConcurrentHashMap1.7的工作原理,包括其如何保证线程安全及内部实现机制,如Segment和HashEntry的作用,volatile关键字的应用,Unsafe类的使用等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标

学习ConcurrentHashMap 1.7 如何保证线程安全的,及其工作流程。

预备知识

为什么需要ConcurrentHashMap

hashtable 只是简单地将需要同步的方法加上"synchronized",使得多个线程可能竞争同一把锁。

HashMap 不能保证线程安全,甚至在并发环境元素成环导致cpu飙升。

Collections.synchronizedMap 也是所有线程竞争同一把锁,该锁默认情况下Map实例,也可以自定义。

volatile 关键字

并发编程中的可见性、原子性、有序性,volatile 可以保证可见性,以及一定的 有序性。一定的有序性是volatile修饰的变量,不仅会使得读取数据直接从主存中读取,更新数据会更新到主存中,而且存在内存屏障 在屏障之前的指令和屏障之后的指令不会因为编译器优化而乱序执行。

不同的编程语言 volatile 语义不同,java 中volatile 可以看做一种轻量级的同步机制,比如对于一写多读是可以解决同步问题。
在这里插入图片描述

Unsafe

提供不安全操作的方法,比如申请直接内存、绕过安全检查直接创建Class、不使用构造函数来创建类的实例等等。ConcurrentHashMap 中也利用Unsafe 类来完成某些操作。
在这里插入图片描述

static {
    int ss, ts;
    try {
        UNSAFE = sun.misc.Unsafe.getUnsafe();
        Class tc = HashEntry[].class;
        Class sc = Segment[].class;
        TBASE = UNSAFE.arrayBaseOffset(tc);
        SBASE = UNSAFE.arrayBaseOffset(sc);
        ts = UNSAFE.arrayIndexScale(tc);
        ss = UNSAFE.arrayIndexScale(sc);
        HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
            ConcurrentHashMap.class.getDeclaredField("hashSeed"));
        SEGSHIFT_OFFSET = UNSAFE.objectFieldOffset(
            ConcurrentHashMap.class.getDeclaredField("segmentShift"));
        SEGMASK_OFFSET = UNSAFE.objectFieldOffset(
            ConcurrentHashMap.class.getDeclaredField("segmentMask"));
        SEGMENTS_OFFSET = UNSAFE.objectFieldOffset(
            ConcurrentHashMap.class.getDeclaredField("segments"));
    } catch (Exception e) {
        throw new Error(e);
    }
    if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
        throw new Error("data type scale not a power of two");
    SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
    TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
}

源码讲解

ConcurrentHashMap 构造函数

构造函数 参数initialCapacity 是容器初始容量,loadfactor 是负载因子,concurrencyLevel 并发级别,决定了内部Segments 数组的大小。可以看出在初始化的过程中就发生了数组创建,造成内存消耗。

public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

isEmpty 函数

判空函数两遍扫描 Segments数组,第二遍是在第一遍扫描的过程中每个Segment都没有元素的情况下发生的,那为什么要进行第二次扫描呢?

public boolean isEmpty() {
        /*
         * Sum per-segment modCounts to avoid mis-reporting when
         * elements are concurrently added and removed in one segment
         * while checking another, in which case the table was never
         * actually empty at any point. (The sum ensures accuracy up
         * through at least 1<<31 per-segment modifications before
         * recheck.)  Methods size() and containsValue() use similar
         * constructions for stability checks.
         */
        long sum = 0L;
        final Segment<K,V>[] segments = this.segments;
        for (int j = 0; j < segments.length; ++j) {
            Segment<K,V> seg = segmentAt(segments, j);
            if (seg != null) {
                if (seg.count != 0)
                    return false;
                sum += seg.modCount;
            }
        }
        if (sum != 0L) { // recheck unless no modifications
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    if (seg.count != 0)
                        return false;
                    sum -= seg.modCount;
                }
            }
            if (sum != 0L)
                return false;
        }
        return true;
    }

原因是第二次扫描可以扫描出那些在第一次扫描过程中put 元素的情况

get 函数

TSHIFT 是根据Segment 的table 中每个元素的大小来确定的。ts = UNSAFE.arrayIndexScale(tc);TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);其实就是HashEntry 的大小。比如是ts 是1000(2进制) TSHIFT 就是 3 (后面0的个数)。

    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

在这里插入图片描述

put函数

  public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

ensureSegment 函数

返回segments 数组指定索引上的Segment ,如果不存在则按照segments[0] 的规格创建一个,并通过cas设置到相应的索引位置上并返回。

    private Segment<K,V> ensureSegment(int k) {
        final Segment<K,V>[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; // raw offset
        Segment<K,V> seg;
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;
            float lf = proto.loadFactor;
            int threshold = (int)(cap * lf);
            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                == null) { // recheck
                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                       == null) {
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                        break;
                }
            }
        }
        return seg;
    }

Segment类中的put函数

scanAndLockForPut 函数执行完之后,该线程就获得了锁,从而可以安全操作table。设计scanAndLockForPut的目的一是再第一次tryLock 失败后进行处理,即尽可能拿到锁,拿不到我就利用其他线程占用的时间做点自己的事情,比如创建HashEntry、或者重试次数过多就会进行park。

当新创建节点后,如果大于threshold 就会进行扩容。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

rehash 扩容函数

该扩容函数逻辑上完成了两个功能,第一完成扩容第二插入新节点,注意在执行到扩容时候,就代表线程已经获取到了锁,不需要额外并发控制。

扩容并不是简单的将每个桶位上的节点移到新table上,而是先扫描一遍得到最后相同位置上的串,放到新table上,然后再一个个挂到新桶上。Reuse consecutive sequence at same slot

private void rehash(HashEntry<K,V> node) {
            /*
             * Reclassify nodes in each list to new table.  Because we
             * are using power-of-two expansion, the elements from
             * each bin must either stay at same index, or move with a
             * power of two offset. We eliminate unnecessary node
             * creation by catching cases where old nodes can be
             * reused because their next fields won't change.
             * Statistically, at the default threshold, only about
             * one-sixth of them need cloning when a table
             * doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by
             * any reader thread that may be in the midst of
             * concurrently traversing table. Entry accesses use plain
             * array indexing because they are followed by volatile
             * table write.
             */
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值