搜索算法(方向数组、dfs搜索)
1.方向数组的搜索(欧拉11题)
题目描述
方阵中的最大乘积
在如下的20×20方阵中,有四个呈对角线排列的数被加粗了。
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
这四个数的乘积是26 × 63 × 78 × 14 = 1788696。
在这个20×20方阵中,四个在同一方向(从下至上、从上至下、从右至左、从左至右或者对角线)上相邻的数的乘积最大是多少?
题目分析
我们引入方向数组的概念,定义dir[k][n]
k表示方向的个数,n表示每个方向的维度,每个向量表示某个方向的偏移量
为了更好的与数组进行结合,我们选择竖直向下为x方向,水平向右为y轴方向
对于这个题目来说,我们一共有8个方向,即A-H
假设中心点为(x,y)则A-H分别为(x-1,y-1),(x-1,y),(x-1,y+1),(x,y+1),(x+1,y+1),(x+1,y+0),(x+1,y-1),(x,y-1)
所以我们取的dir[8][2]={
{-1,-1},{-1,0},{-1,+1},{0,+1},{+1,+1},{+1,0},{+1,-1},{0,-1}}
我们遍历所有的点,每个点按照方向向量的8个方向取另外的三个点得到4点的乘积,不断更新最大的乘积即可,边界条件要注意当我们取点取到边界外时停止取点,因为上述ABCD与EFGH方向对称,遍历其他点的ABCD方向就可以得到另外点的EFGH方向,所以我们只需保留4个方向即可,即dir[4][2]={
{-1,-1},{-1,0},{-1,+1},{0,+1}}
题目代码
#include<stdio.h>
#define max_n 20
int arr[max_n + 5][max_n + 5];
int dir[4][2]={
{
-1, -1}, {
-1, 0}, {
-1, +1}, {
0, +1}};
int calc(int x, int y){
//返回(x,y)四个方向连续四个数乘积的最大值
int ans = 0;
for(int k = 0; k < 4; k++){
int p = 1;//每一个方向结束后,都得将中间量p置1
for(int step = 0; step < 4; step++){
int dx = x + dir[k][0] * step;
int dy = y + dir[k][1