Educational Codeforces Round 92 (Rated for Div. 2) C - Good String (思维)

题目传送
题意:
给你一个字符串,现在有俩种操作,一种是字符串所有位都向左平移一个单位,另一种是向右平移一个单位,现在要使得这个字符串俩种操作后的字符串还是相等的,问最少改动多少个字符?

思路:
既然要平移后的字符串还是完全相等的,那么可以得到:
s[i-1] == s[i+1] (向右平移的和向左平移的),那么再推一下就可以得到只有俩种字符串是可以的:
1111111 或者 2525252525(这种只能是偶数)
那么由于是只有0到9的数字组成,那么当然也就20种情况,暴力跑一下就可以了

AC代码

#include <bits/stdc++.h>
inline long long read(){char c = getchar();long long x = 0,s = 1;
while(c < '0' || c > '9') {if(c == '-') s = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x*10 + c -'0';c = getchar();}
return x*s;}
using namespace std;
#define NewNode (TreeNode *)malloc(sizeof(TreeNode))
#define Mem(a,b) memset(a,b,sizeof(a))
#define lowbit(x) (x)&(-x)
const int N = 2e5 + 5;
const long long INFINF = 0x7f7f7f7f7f7f7f;
const int INF = 0x3f3f3f3f;
const double EPS = 1e-7;
const int mod = 1e9 + 7;
const double II = acos(-1);
const double PP = (II*1.0)/(180.00);
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> piil;
signed main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    //    freopen("input.txt","r",stdin);
    //    freopen("output.txt","w",stdout);
    int t;
    cin >> t;
    while(t--)
    {
        string s;
        cin >> s;
        int Min = INF,len = s.size();
        for(int i = 0;i < 10;i++)
        {
            for(int j = 0;j < 10;j++)
            {
                int num = 0,x = 0,y = 0;
                for(int k = 0;k < len;k++)
                {
                    if(!x && s[k]-'0' == i)
                        num++,x = 1;
                    else if(x && !y && s[k]-'0' == j)
                        num++,y = 1;
                    if(x && y)
                        x = 0,y = 0;
                }
                if(i != j && num % 2 != 0) num--;//判断是哪种情况
                Min = min(Min,len-num);//更新改动的最少次数
            }
        }
        cout << Min << endl;
    }
}
内容概要:本文针对火电厂参与直购交易挤占风电上网空间的问题,提出了一种风火打捆参与大用户直购交易的新模式。通过分析可再生能源配额机制下的双边博弈关系,建立了基于动态非合作博弈理论的博弈模型,以直购电价和直购电量为决策变量,实现双方收益均衡最大化。论文论证了纳什均衡的存在性,并提出了基于纳什谈判法的风-火利益分配方法。算例结果表明,该模式能够增加各方收益、促进风电消纳并提高电网灵活性。文中详细介绍了模型构建、成本计算和博弈均衡的实现过程,并通过Python代码复现了模型,包括参数定义、收益函数、纳什均衡求解、利益分配及可视化分析等功能。 适合人群:电力系统研究人员、能源政策制定者、从事电力市场交易的工程师和分析师。 使用场景及目标:①帮助理解风火打捆参与大用户直购交易的博弈机制;②为电力市场设计提供理论依据和技术支持;③评估不同政策(如可再生能源配额)对电力市场的影响;④通过代码实现和可视化工具辅助教学和研究。 其他说明:该研究不仅提供了理论分析,还通过详细的代码实现和算例验证了模型的有效性,为实际应用提供了参考。此外,论文还探讨了不同场景下的敏感性分析,如证书价格、风电比例等对市场结果的影响,进一步丰富了研究内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值