高斯消元法

本文介绍了解决n元联立方程组的高斯消元法。通过将方程组转化为增广矩阵,并逐步转化为上三角矩阵的形式来求解未知数。文章提供了详细的算法步骤及C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯消元法是用来解决n元联立方程组的
把方程组转化成增广矩阵,然后转化成上三角矩阵形式(每次变换一行中的那个位置),那么方程组的解就可以很方便带入计算
三角形的最后一行的那个数即是Xn的解,然后再带入上一行,解出Xn-1,然后依次继续

恒等初等变换
1.交换方程组中俩个方程的位置
2.把一个方程替换成它的非零倍
3.把一个方程替换为它和另外一个方程倍数之间的和或差

板子
O(n3)

    double arr[100][100],b[100];
    int n,m;
    cin >> n >> m;
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= m;j++)
            cin >> arr[i][j];
    for(int i = 1;i <= n;i++)//方程右边的值
        cin >> b[i];
    for(int i = 1;i <= n;i++)//增广矩阵
        arr[i][m+1] = b[i];
    for(int i = 1;i <= n-1;i++)
    {
        int pos = i;
        for(int j = i+1;j <= n;j++)//找出最大的那个数的那一行,交换行数,减小精度误差
            if(fabs(arr[j][i]) > fabs(arr[pos][i]))
                pos = j;
        for(int k = i;k <= n+1;k++)//交换
            swap(arr[i][k],arr[pos][k]);
        for(int j = i+1;j <= n;j++)
        {
            double num = arr[j][i]/arr[i][i];//减去的倍数
            for(int k = i;k <= n+1;k++)
                arr[j][k] = arr[j][k] - arr[i][k]*num;
        }
    }//转化成上三角
//    cout << endl;
//    for(int i = 1;i <= n;i++)
//        for(int j = 1;j <= m+1;j++)
//            j != m+1 ? cout << arr[i][j] << " " : cout << arr[i][j] << endl;
	for(int i = 1;i <= n;i++)
        if(fabs(arr[i][i]) <= 1e-16)//如果有一个等于0,那么没有唯一解
            ans = 0;
    for(int i = n;i >= 1;i--)//回溯求解
    {
        for(int j = i+1;j <= n;j++)
            arr[i][n+1] -= arr[i][j]*arr[j][n+1];
        arr[i][n+1] /= arr[i][i];
    }
    for(int i = 1;i <= n;i++)
    	cout << arr[i][n+1] << endl;