简介
通过使用深度学习技术,实现对视频中人物性别和年龄的实时识别。通过应用预训练的卷积神经网络模型,我们能够检测视频中的人脸,并预测其性别和年龄范围。
代码步骤
- 导入所需的Python库,包括OpenCV、PIL和NumPy。
import cv2 from PIL import Image,ImageDraw,ImageFont import numpy as np
- 加载性别和年龄识别的预训练模型文件。
# 加载性别和年龄识别模型的路径 faceproto="opencv_face_detector.pbtxt" facemodel="opencv_face_detector_uint8.pb" ageproto="deploy_age.prototxt" agemodel="age_net.caffemodel" genderproto="deploy_gender.prototxt" gendermodel="gender_net.caffemodel"
- 初始化人脸,年龄和性别识别网络
# 初始化年龄和性别识别网络 # 年龄识别模型的配置文件和权重文件 agenet=cv2.dnn.readNet(agemodel,ageproto) # 性别识别模型的配置文件和权重文件 gendernet=cv2.dnn.readNet(gendermodel,genderproto) # 人脸检测模型的配置文件和权重文件 facenet=cv2.dnn.readNet(facemodel,faceproto)
- 生成年龄和性别的标签列表
# 年龄和性别的标签列表 agelist=['0-2','4-6','8-12','15-20','25-32','38-43','48-53','60-100'] genderlist=['man','woman'] # 均值用于图像预处理 mean=(78.4263377603,87.7689143744,114.895847746)
- 定义函数:
getboxes
:用于从视频帧中检测人脸并返回边界框。-
获取视频帧的高度和宽度
# 定义一个函数来获取人脸检测的边界框 def getboxes(net,frame): # 获取视频帧的高度和宽度。 frameheight,framewidth=frame.shape[:2] # 将帧转换为模型输入所需的blob blob=cv2.dnn.blobFromImage(frame,1.0,(300,300),[104,117,123],True,False) # 获取网络输出的检测结果 ne
-