opencv学习:基于深度学习的视频人物性别和年龄识别及完整代码实现

简介

通过使用深度学习技术,实现对视频中人物性别和年龄的实时识别。通过应用预训练的卷积神经网络模型,我们能够检测视频中的人脸,并预测其性别和年龄范围。

代码步骤

  1. 导入所需的Python库,包括OpenCV、PIL和NumPy。
    import cv2
    from PIL import Image,ImageDraw,ImageFont
    import numpy as np
  2. 加载性别和年龄识别的预训练模型文件。
    # 加载性别和年龄识别模型的路径
    faceproto="opencv_face_detector.pbtxt"
    facemodel="opencv_face_detector_uint8.pb"
    ageproto="deploy_age.prototxt"
    agemodel="age_net.caffemodel"
    genderproto="deploy_gender.prototxt"
    gendermodel="gender_net.caffemodel"
  3. 初始化人脸,年龄和性别识别网络
    # 初始化年龄和性别识别网络
    # 年龄识别模型的配置文件和权重文件
    agenet=cv2.dnn.readNet(agemodel,ageproto)
    # 性别识别模型的配置文件和权重文件
    gendernet=cv2.dnn.readNet(gendermodel,genderproto)
    # 人脸检测模型的配置文件和权重文件
    facenet=cv2.dnn.readNet(facemodel,faceproto)
  4. 生成年龄和性别的标签列表
    # 年龄和性别的标签列表
    agelist=['0-2','4-6','8-12','15-20','25-32','38-43','48-53','60-100']
    genderlist=['man','woman']
    # 均值用于图像预处理
    mean=(78.4263377603,87.7689143744,114.895847746)
  5. 定义函数
    • getboxes:用于从视频帧中检测人脸并返回边界框。
      • 获取视频帧的高度和宽度
        # 定义一个函数来获取人脸检测的边界框
        def getboxes(net,frame):
            # 获取视频帧的高度和宽度。
            frameheight,framewidth=frame.shape[:2]
            # 将帧转换为模型输入所需的blob
            blob=cv2.dnn.blobFromImage(frame,1.0,(300,300),[104,117,123],True,False)
            # 获取网络输出的检测结果
            ne
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值