深度学习:yolov3的使用--建立模型

使用argparse模块来定义和解析命令行参数

创建一个ArgumentParser对象

parser = argparse.ArgumentParser()

训练的轮数,每批图像的大小,更新模型参数之前累积梯度的次数,模型定义文件的路径。

parser.add_argument("--epochs", type=int, default=100, help="number of epochs") #训练次数
    parser.add_argument("--batch_size", type=int, default=1, help="size of each image batch")   #batch的大小
    parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step")#在每一步(更新模型参数)之前累积梯度的次数”
    parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") #模型的配置文件
    

数据配置文件的路径,从预训练的模型权重开始训练,生成批次数据时使用的CPU线程数。

parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") #数据的配置文件
    parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model") #预训练文件
    parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation")#数据加载过程中应使用的CPU线程数。
    

每张图像的尺寸,每隔多少个epoch保存一次模型权重,每隔多少个epoch在验证集上进行一次评估,每十批计算一次平均精度(mAP),是否允许多尺度训练,

parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
    parser.add_argument("--checkpoint_interval", type=int, default=20, help="interval between saving model weights")#隔多少个epoch保存一次模型权重
    parser.add_argument("--evaluation_interval", type=int, default=20, help="interval evaluations on validation set")#多少个epoch进行一次验证集的验证
    parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch")#
    parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training")

使用parse_args方法解析命令行参数

opt = parser.parse_args()

使用TensorFlow 2.0以上版本中的tf.summary模块创建日志记录器(Logger)

import tensorflow as tf  # 导入TensorFlow库,并简写为tf
# 确保使用的是TensorFlow 2.0或更高版本

class Logger(object):
    def __init__(self, log_dir):
        """
        Create a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值