44、深度学习实战最佳实践与核心概念解析

深度学习实战:TPU训练与核心概念

深度学习实战最佳实践与核心概念解析

1. TPU 训练概述

在深度学习领域,除了 GPU,还有一种趋势是将工作流转移到专门为深度学习设计的专用硬件上,这类单用途芯片被称为 ASIC(专用集成电路)。众多大小公司都在研发新芯片,目前最突出的是谷歌的张量处理单元(TPU),可在 Google Cloud 和 Google Colab 上使用。

TPU 训练虽有一定难度,但额外的付出是值得的。TPU 速度极快,TPU V2 训练速度通常比 NVIDIA P100 GPU 快 15 倍。对于大多数模型,TPU 训练的成本效益平均比 GPU 训练高 3 倍。

2. 通过 Google Colab 使用 TPU

在 Colab 中可以免费使用 8 核 TPU。在 Colab 菜单的“Runtime”选项卡下,选择“Change Runtime Type”,会发现除了 GPU 运行时,还可以选择 TPU 运行时。

使用 GPU 运行时,模型可直接访问 GPU,无需特殊操作。但使用 TPU 运行时,在构建模型前需先连接到 TPU 集群,代码如下:

import tensorflow as tf
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
print("Device:", tpu.master())

和多 GPU 训练类似,使用 TPU 需要开启一个分布策略范围,这里是 TPUStrategy 范围。 TP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值