运行时策略:优化机器学习模型在资源受限环境中的性能
1. 模型选择与帕累托最优
在模型选择方面,会考虑每种情况下训练集的最高和最低准确率,以及处于两者成本中点的模型。这种选择是基于观察到的切换策略性能在经验上受模型对之间的交集限制。所选择的两对模型能够跨越接近原始帕累托最优前沿的区域,通过有限数量(如三个)的模型就有可能达到帕累托最优的权衡前沿。
2. 超参数选择
2.1 超参数介绍
策略的行为由两个超参数决定:
- TPolicy
:决定策略评估的频率,同时影响 Stable
变量。
- accmin
:设置阈值 StoC,cpred
,引导策略从简单模型切换到复杂模型。
2.2 超参数选择方法
对于实验,通过网格搜索为每个活动持续时间选择 TPolicy
和 accmin
。具体操作步骤如下:
1. 在验证集上应用具有可用超参数值的切换策略。
2. 选择成本与准确率的帕累托最优集。
考虑的 TPolicy
值为 {2, 5, 10, 15, 20, 25}
, accmin
值为 {70%, 80%, 90%}
。
2.3 超参数影响
不同 TPolicy
值的影响如下表所示: