懒省事的小明
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
小明很想吃果子,正好果园果子熟了。在果园里,小明已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。小明决定把所有的果子合成一堆。 因为小明比较懒,为了省力气,小明开始想点子了:
每一次合并,小明可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。小明在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以小明在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以小明总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。-
输入
- 第一行输入整数N(0<N<=10)表示测试数据组数。接下来每组测试数据输入包括两行,第一行是一个整数n(1<=n<=12000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。 输出
- 每组测试数据输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。 样例输入
-
1 3 1 2 9
样例输出
-
15
来源
- [hzyqazasdf]原创 上传者
思路:
优先队列问题,其实我一开始就只知道应该每次取重量最小的两个堆,而且每次两个堆合并的数量要加到重量列表里当成一个新的堆,再将所有堆的数量排序找出两个重量最小的堆重复上面操作,直到只剩下一个堆,就可以了。其实仔细想想正好可以用优先队列解决!所以说做题的时候多想点,思路很重要。
#include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; struct node { int x; friend bool operator<(node a,node b) { return a.x>b.x;//优先队列,按重量从小到大排 } }; node aa[12005]; int main() { priority_queue<node>q; int t,i; cin>>t; while(t--) { int n; node min1,min2,temp; long long int sum=0; cin>>n; for(i=0;i<n;i++) { cin>>aa[i].x; q.push(aa[i]); } while(!q.empty()) { min1.x=0; min2.x=0; min1=q.top(); q.pop(); if(!q.empty()) { min2=q.top(); q.pop(); } temp.x=min1.x+min2.x; sum+=temp.x; //cout<<min1.x<<" "<<min2.x<<endl; //cout<<"&"<<sum<<endl; if(!q.empty()) q.push(temp); } cout<<sum<<endl; } return 0; }