拟合(Fitting)

个人博客:wyxogo.top
提取完边缘后如何使用数学模型来描述边缘?
例如:在桌子上有几枚硬币,在经过边缘提取后,需要描述出硬币的圆心坐标和圆的大小

难点

  1. 噪声:噪声的存在使拟合的模型偏离真实的线
  2. 外点:在目标图形以外的线,如上图中的目标图形为“车”,左边的“栅栏”就是外点
  3. 目标图形部分被遮挡,使部分图形消失

最小二乘(Least Square)

针对点都在线上的一些简单模型

  • 最小二乘

    能量函数 E E E描述的是所有的点与拟合的线在 y y y方向上的差值的和,最后的目标是求出差值最小时的 ( m , b ) (m,b) (m,b)即矩阵 B B B作为这个模型的解

  • 权最小二乘
    当拟合的直线是平行 y y y时就无法按照上面的公式计算 E E E(最小二乘对旋转没有效果)

    权最小二乘将点在 y y y方向的距离改为对直线距离的平方,就可以避免旋转产生的问题
    ,它的几何描述就是所有的向量 ( x i − x ˉ , y i − y ˉ ) (x_i-\bar x,y_i-\bar y) (xixˉ,yiyˉ)在向量 ( a , b ) (a,b) (a,b)的投影的值最小

  • 极大似然估计

    使用概率分布的思想来理解权最小二乘,概率越大拟合效果越好,极大似然估计,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值,它提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。

如果通过极大似然估计,得到模型中参数 μ \mu μ σ \sigma σ的值,那么这个模型的均值和方差以及其它所有的信息我们就知道了。

Roubst Fitting & RANSAC

当存在外点时,普通的(权)最小二乘就无法很好的拟合模型

鲁棒拟合(Roubst fitting)

通过函数 ρ ( u ; σ ) \rho(u;\sigma) ρ(u;σ)将点到直线的距离 u u u在较大的范围时对直线影响的贡献值缩小, σ \sigma σ为设置的参数,当参数越小对所取的预拟合模型的区域越小,例如当 σ = 0.1 \sigma=0.1 σ=0.1时,对超过2以后的区域几乎就不做考虑了

  • 鲁棒函数估计
  1. 对于一个非线性的优化问题就不能使用前面的方程求解,需要使用迭代的方式求解类似于梯度下降
  2. 先不考虑鲁棒拟合的问题,利用最小二乘得到一个初始解
  3. 根据经验将尺度参数 σ \sigma σ设置成 1.5 1.5 1.5倍的平均残差
  • 处理后的效果

RANSAC(随机采样一致性)

当存在许多的点都不在模型上,或者是图片被遮挡,这种时候就需要使用较少的点来拟合出模型

  • RANSAC
  1. 选择一个最小的集合 s s s(估计一条直线需要两个点)
  2. 拟合出一个模型
  3. 设置一个门限 t t t
  4. 用门限 t t t内剩余的点给这个模型“投票”,即“离得近”就 得分
  5. 重复上述过程,取“得分”最高的模型,设置迭代次数 N N N

  • 选择参数

e e e:外点率, s s s:模型的最小范围, N N N:最大迭代次数, p p p:正确率

  • 自适应的参数提取
    在实际问题中,只知道参数 t , s t,s t,s,无法知道外点率 e e e也就无法确认迭代次数 N N N
    解决方法如下:

  • 使用RANSAC思想进行指纹识别

霍夫变换(Hough Transfrom)

于对存在大量的线的模型,即使设置了较小的门限也无法有效的区分“谁是谁的内点”

主要的改进策略:将点不在是对某一条直线投票,将投票离散化,使图像空间对参数空间进行转换

图像空间的一条直线在参数空间是一个点,参数空间多条线的交点是图像空间的

如果使用直角坐标那么参数范围不好界定,穷举就很困难,例如当图像空间的一条竖直方向的直线,此时 x x x取定值, y y y取任意值,在参数空间中就无法表示;在训练过程中也无法给 m , b m,b m,b划分范围。

使用极坐标系问题就解决了:极坐标的 θ \theta θ可以取 [ 0 , 180 ] [0 ,180] [0,180],可以完整的与图像空间对应

  • 一些例子

  • 霍夫变换处理噪声

    在Candy算子中得到点时就知道了梯度方向,相应的边缘方向的范围就大概确认了,这是就是可以缩小 θ \theta θ的范围,从而解决了噪声的影响,也简化了计算

  • 霍夫变换拟合圆

    确定一个圆需要圆心坐标 ( x , y ) (x, y) (x,y)和半径 r r r,有三个参数,参数空间就需要是一个三维空间,取圆上的一个点,则可以由梯度方向确定半径方向,穷举所用的 r r r(大于0,小于图像长度),遍历圆上的点对 r r r进行投票,最后在参数空间会得到一个票数高的三维空间,这个三维空间的中的一点 ( x , y , r ) (x,y,r) (x,y,r)就可以作为拟合的圆心和半径。

学习资源:北京邮电大学计算机视觉——鲁鹏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值