机器学习模型谱系图——生成式模型与判别式模型

 目录

一、总览:生成式 vs 判别式

核心问题:

模型思路有两种:

二、生成式模型支系

1.朴素贝叶斯(Naive Bayes)

2.隐马尔可夫模型(HMM)

3.有向概率图模型(贝叶斯网络)

三、判别式模型支系

判别式模型进一步细分为两种学习方式:

(1)分数式(Scoring)分类:

A. 感知机(Perceptron)

B. 支持向量机(SVM)

C. 神经网络(Neural Network)

D. 结构化学习扩展:

(2)概率式分类:

A. 逻辑回归(Logistic Regression)

B. 条件随机场(CRF)

C. 无向图模型(Markov Random Field)

四、关键流程对比(汇总)

五、拓展补充模型建议

六、总结术语图


机器学习模型谱系图——生成式模型与判别式模型

机器学习模型谱系图,聚焦于 生成式模型(Generative Models)判别式模型(Discriminative Models) 的基本分类逻辑。


一、总览:生成式 vs 判别式

核心问题:

给定输入特征 x,预测输出 y

模型思路有两种:

类别 目标 表达形式 举例
生成式模型 建模联合概率分布 P(x,y) 使用贝叶斯法则推导 (P(y x))
判别式模型 直接建模条件概率 (P(y x)) 或决策边界 学习 y 和 x 的映射关系

二、生成式模型支系

1.朴素贝叶斯(Naive Bayes)

  • 假设条件独立性:

  • 推理目标:最大后验概率(MAP)

2.隐马尔可夫模型(HMM)

  • 建模序列数据:状态转移 + 观测发射

  • 常用于语音识别、词性标注等

3.有向概率图模型(贝叶斯网络)

  • 图结构描述因果或条件依赖关系

  • 包括 HMM 和朴素贝叶斯等模型


三、判别式模型支系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

34号树洞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值