24、数据工程中的Python Wheels、安全控制与行级安全实现

数据工程中的Python Wheels、安全控制与行级安全实现

在数据工程领域,Python Wheels的使用、数据平台的安全控制以及行级安全的实现是至关重要的方面。下面我们将详细探讨这些内容。

1. Python Wheels与持续集成部署

Python Wheels是一种打包Python代码的方式,它可以简化代码的创建、打包和共享过程。通过使用Visual Studio Code,我们可以创建Python wheel文件,并将其加载到Databricks Cluster Library中,最后在Databricks笔记本中调用包内的函数。

持续集成和部署(CI/CD)是将笔记本代码推广到更高环境的重要过程。在Azure Databricks中,结合Azure DevOps可以实现这一过程。具体步骤如下:
1. 开发者完成代码开发并将其提交到仓库。
2. 通过Azure DevOps(ADO)的经典界面或直接使用YAML脚本创建构建管道。
3. ADO Build Agent和构建管道设置完成后,会收集新代码、运行自动化测试,并构建库和Spark代码。
4. 在发布管道中,生成发布工件,将笔记本和库部署到更高环境,并运行自动化测试和报告。

更多关于在Azure Databricks上使用Azure DevOps设置CI和CD过程的详细信息,请参考:

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值