关注公众号,发现CV技术之美
本文分享 ACM MM 2021 论文『Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection』,由北航&鹏城实验室联合提出互补三边解码器网络 CTDNet 用于显著物体检测,在参数更少、速度更快的情况下仍然取得了非常好的分割结果,实现了性能和效率的良好平衡!
以下是论文和作者的详细信息:
论文链接:https://dl.acm.org/doi/pdf/10.1145/3474085.3475494
项目链接:https://github.com/iCVTEAM/CTDNet
课题主页:https://cvteam.buaa.edu.cn
01
引言
显著物体检测(SOD)旨在分割图像中引起人们注意的物体或区域。作为一种高效的预处理技术,它在许多下游的计算机视觉任务中起着重要的作用。
然而,大多数现有的S